-
class AdalineGD(object): def __init__(self, eta, n_iter): self.eta = eta self.n_iter = n_iter def fit(self, X, y): self.w_ = np.zeros(1 + X.shape[1]) self.cost_ [] for i in range(self.n_iter): output = self.net_input(X) errors = y - output self.w_[1:] += self.eta * X.T.dot(errors) self.w_[0] += self.eta * errors.sum() cost = (errors ** 2).sum() / 2.0 self.cost_.append(cost) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, X): return self.net_input(X) def predict(self, X): return np.where(self.activation(X) >= 0, 1, -1)
查看全部 -
η是前面提到的学习率,μ=-η。
查看全部 -
倒数第三行,求和符号下面的是j,不是i。
查看全部 -
对w求偏导,会得到一条切线的斜率k,当在U形图左半部的时候,k<0,增大w的值,在在右半部的时候,k>0,减小w的值,就会找到J(w)的最小值。
查看全部 -
不断调整w0-wm,使得J(w)的值最小,对神经元的训练效果才最好。
查看全部 -
感知器的激活函数是步调函数,输入值大于给定的阈值输出1,小于输出0。自适应线性神经元激活函数是1*w0+x1*w1+... 点积求和的计算结果与正确的结果比较
查看全部 -
from matplotlib.colors import ListedColormap def plot_decision_region(X, y, classifier, resolution=0.02): marker = ('s', 'x', 'o', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListColormap(colors[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() # 将np.arange()中的向量扩展成一个矩阵 ''' xx1: a = np.arange(x1_min, x1_max, resolution) 向量元素为185个 xx1[255, 185],将a中的元素作为一行,重复255行 xx2: b = np.arange(x2_min, x2_max, resolution) 向量元素为255个 xx2[255, 185],将b中的元素作为一列,重复185列 ''' xx1, xx2 = np.mesbgrid(np.arange(x1_min, x1_max, resolution), np.arrange(x2_min, x2_max, resolution))
查看全部 -
file = "iris.csv" import pandas as pd # 数据读取类库 # header指定文件是否有表头 df = pd.read_csv(file, header = None) # 显示文件前十行 df,head(10) import matplotlib.pyplot as plt import numpy as np # 得到数据前一百行的第五列 y = df.loc[0:100, 4].values print(y) # 将字符串转化为数字 y = np.where(y == 'Iris-setosa', -1, 1) # 抽取数据第0列和第2列 x = df,iloc[0:100, [0, 2]].values # scatter散列点绘图 plt.scatter(x[:50, 0], x[:50, 1], color='red', marker='o', label='setosa') plt.scatter(x[50:100, 0], x[50:100, 1], color='blue', marker='x', label='versicolor') plt.xlabel('花瓣长度') plt.ylabel('花茎长度') plt.legend(loc='upper left') plt.show()
查看全部 -
import numpy as np class Perceptron(object): def __init__(self, eta = 0.01, n_iter = 10): self.eta = eta self.n_iter = n_iter def fit(self, X, y): self.w_ = np.zero(1 + X.shape[1]) self.error_ = [] for _ in range(self.n_iter): errors = 0 ''' X:[[1, 2, 3], [4, 5, 6] y:[1, -1] zip(X, y):[[1, 2, 3, 1]. [4, 5, 6, -1]] ''' for xi, target in zip(X, y): ''' update = n * (y - y') ''' update = self.eta * (target - self.predict(xi)) ''' xi是一个向量 update * xi等价于 [w1 = x1*update, w2 = x2*update, ......] ''' self.w_[1:] += update * xi self.w_[0] += update errors += int(update != 0.0) self.errors_.append(errors) def net_input(self, X): ''' z = w0*1 + w1*x1 + w2*x2 +..... np.dot()是做点积 ''' return np.dot(X, self.w_[1:]) + self.w_[0] def predict(self, X): return np.where(self.net_input(X) >= 0.0, 1, -1)
查看全部 -
import numpy as np class Perceptron(object): ''' eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 ''' def __init__(self, eta = 0.01, n_iter = 10); self.eta = eta self,n_iter = n_iter def fit(self, X, y): ''' 输入训练数据,培训神经元 X是输入样本向量,y是对应的样本分类 X:shape[n_samples, n_features] X:[[1, 2, 3], [4, 5, 6]] n_samples: 2 n_features: 3 y:[1, -1] ''' #初始化权重向量为0,加1是因为提到的w0,即步调函数的阈值 self.w_ = np.zero(1 + X.shape[1]) self.errora_ = []
查看全部 -
适用范围:预测的数据是可以进行线性分割的
感知器的隐含层是点积求和函数
查看全部 -
阈值也是需要更新的查看全部
-
权重更新算法
学习率是训练者人为设置的
查看全部 -
右侧的关于z的函数就是感知器
查看全部 -
感知器数据分类算法步骤
查看全部
举报
0/150
提交
取消