-
感知器算法可以应用于在线监测设备的不同数据 从而将数据融合 从而展现设备状态
查看全部 -
神经元数学模型:将多个信号融合再一起 经过神经元后再分解
查看全部 -
每一个神经元通过他的分叉组织去接受多个电信号,每一个分叉会先将电信号做一些处理,也就是把传入的电信号乘以一个参数,所以分叉对应的参数就可以组成一个向量,称之为权重向量W;输入的电信号又可以组成一个向量,称为训练样本X
整个机器学习最终的目的就是通过输入的训练样本反复计算和更新这个权重向量,只有这个权重向量更新到一定的程度之后,整个模型才能够有效的对输入的未知数据进行分类和预测
感知器算法适用范围:预测的数据可以线性分割
感知器算法的步骤:
第一步:初始化感知器的权重向量,也就是初始化向量W
查看全部 -
向量的点积。。。。
查看全部 -
感知器算法步骤
查看全部 -
感知器算法的使用范围
本质就是线性分类,需要能够线性分割
查看全部 -
阈值的更新
查看全部 -
权重更新算法
查看全部 -
步调函数与阈值
查看全部 -
感知器数据分类算法的步骤
查看全部 -
激活函数的表示
查看全部 -
神经元的数学表示
查看全部 -
神经网络的结构
查看全部 -
算法步骤总结
查看全部 -
简单的神经网络
查看全部
举报
0/150
提交
取消