DQN本质上仍然是Q-learning,只是利用了神经网络表示动作值函数,并利用了经验回放和单独设立目标网络这两个技巧。DQN无法克服Q-learning 本身所固有的缺点——过估计。过估计是指估计的值函数比真实值函数要大。一般来说,Q-learning之所以存在过估计的问题,根源在于Q-learning中的最大化操作。
DQN
Max操作使得估计的值函数比值函数的真实值大。如果值函数每一点的值都被过估计了相同的幅度,即过估计量是均匀的,那么由于最优策略是贪婪策略,即找到最大的值函数所对应的动作,这时候最优策略是保持不变的。也就是说,在这种情况下,即使值函数被过估计了,也不影响最优的策略。强化学习的目标是找到最优的策略,而不是要得到值函数,所以这时候就算是值函数被过估计了,最终也不影响我们解决问题。然而,在实际情况中,过估计量并非是均匀的,因此值函数的过估计会影响最终的策略决策,从而导致最终的策略并非最优,而只是次优。
为了解决值函数过估计的问题,Double Q-learning 将动作的选择和动作的评估分别用不同的值函数来实现。
Paper:
DDQN:Deep Reinforcement Learning with Double Q-learning
Github:https://github.com/xiaochus/Deep-Reinforcement-Learning-Practice
Double DQN和Nature DQN的区别仅仅在于目标Q值的计算。
在之前的文章中,Nature DQN中的target_Q是这样计算的:
y = self.model.predict(states) q = self.target_model.predict(next_states) for i, (_, action, reward, _, done) in enumerate(data): target = reward if not done: target += self.gamma * np.amax(q[i]) y[i][action] = target
在Double DQN中,target_Q是这样计算的:
y = self.model.predict(states) q = self.target_model.predict(next_states) next_action = np.argmax(self.model.predict(next_states), axis=1) for i, (_, action, reward, _, done) in enumerate(data): target = reward if not done: target += self.gamma * q[i][next_action[i]] y[i][action] = target
两者的区别在于,在对next时刻的Q值进行选取时,不在使用最大值,而是使用主网络预测出来的next_action进行选取,除此之外算法其余部分完全一样。
完整代码:
# -*- coding: utf-8 -*-import osimport randomimport numpy as npfrom DQN import DQNclass DDQN(DQN): """Nature Deep Q-Learning. """ def __init__(self): super(DDQN, self).__init__() self.model = self.build_model() self.target_model = self.build_model() self.update_target_model() if os.path.exists('model/ddqn.h5'): self.model.load_weights('model/ddqn.h5') def update_target_model(self): """update target_model """ self.target_model.set_weights(self.model.get_weights()) def process_batch(self, batch): """process batch data Arguments: batch: batch size Returns: X: states y: [Q_value1, Q_value2] """ # ranchom choice batch data from experience replay. data = random.sample(self.memory_buffer, batch) # Q_target。 states = np.array([d[0] for d in data]) next_states = np.array([d[3] for d in data]) y = self.model.predict(states) q = self.target_model.predict(next_states) next_action = np.argmax(self.model.predict(next_states), axis=1) for i, (_, action, reward, _, done) in enumerate(data): target = reward if not done: target += self.gamma * q[i][next_action[i]] y[i][action] = target return states, y def train(self, episode, batch): """training Arguments: episode: game episode batch: batch size Returns: history: training history """ history = {'episode': [], 'Episode_reward': [], 'Loss': []} count = 0 for i in range(episode): observation = self.env.reset() reward_sum = 0 loss = np.infty done = False while not done: # chocie action from ε-greedy. x = observation.reshape(-1, 4) action = self.egreedy_action(x) observation, reward, done, _ = self.env.step(action) # add data to experience replay. reward_sum += reward self.remember(x[0], action, reward, observation, done) if len(self.memory_buffer) > batch: X, y = self.process_batch(batch) loss = self.model.train_on_batch(X, y) count += 1 # reduce epsilon pure batch. self.update_epsilon() # update target_model every 20 episode if count != 0 and count % 20 == 0: self.update_target_model() if i % 5 == 0: history['episode'].append(i) history['Episode_reward'].append(reward_sum) history['Loss'].append(loss) print('Episode: {} | Episode reward: {} | loss: {:.3f} | e:{:.2f}'.format(i, reward_sum, loss, self.epsilon)) self.model.save_weights('model/ddqn.h5') return historyif __name__ == '__main__': model = DDQN() history = model.train(600, 32) model.save_history(history, 'ddqn.csv') model.play('dqn')
训练与测试结果如下,在使用与DQN同样的参数的情况下,可以看出Double DQN收敛的更好,在每次测试中都能够拿到200的分数。
Episode: 550 | Episode reward: 143.0 | loss: 0.052 | e:0.01 Episode: 555 | Episode reward: 200.0 | loss: 0.010 | e:0.01Episode: 560 | Episode reward: 200.0 | loss: 0.750 | e:0.01 Episode: 565 | Episode reward: 157.0 | loss: 0.067 | e:0.01Episode: 570 | Episode reward: 200.0 | loss: 0.018 | e:0.01 Episode: 575 | Episode reward: 200.0 | loss: 5.615 | e:0.01Episode: 580 | Episode reward: 200.0 | loss: 0.035 | e:0.01 Episode: 585 | Episode reward: 200.0 | loss: 0.011 | e:0.01Episode: 590 | Episode reward: 200.0 | loss: 0.041 | e:0.01 Episode: 595 | Episode reward: 156.0 | loss: 6.012 | e:0.01play... Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0Reward for this episode was: 200.0
DDQN
CMP
作者:洛荷
链接:https://www.jianshu.com/p/69dd9eeca317
共同学习,写下你的评论
评论加载中...
作者其他优质文章