为了账号安全,请及时绑定邮箱和手机立即绑定

python进阶

廖雪峰 移动开发工程师
难度中级
时长 3小时33分
学习人数
综合评分9.20
575人评价 查看评价
9.6 内容实用
9.0 简洁易懂
9.0 逻辑清晰
  • reduce()函数 reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。 上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。 reduce()还可以接收第3个可选参数,作为计算的初始值。
    查看全部
  • map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。 注意:map()函数不改变原有的 list,而是返回一个新的 list。 利用map()函数,可以把一个 list 转换为另一个 list,只需要传入转换函数。 由于list包含的元素可以是任何类型,因此,map() 不仅仅可以处理只包含数值的 list,事实上它可以处理包含任意类型的 list,只要传入的函数f可以处理这种数据类型。
    查看全部
  • 高阶函数 1.变量可以指向函数 2.函数名其实就是指向函数的变量 高阶函数:能接收函数做参数的函数 1.变量可以指向函数 2.函数的参数可以接收变量 3.一个函数可以接收另一个函数作为参数 4.能接收函数作为参数的函数就是高阶函数
    查看全部
  • 函数式: functional 一种编程范式。 函数式编程的特点: 1.把计算视为函数而非指令 2.春函数式编程:不需要变量,没有变量,测试简单 3.支持高阶函数,代码简洁 Python支持的函数式编程: 1.不是纯函数式编程:允许有变量 2.支持高阶函数:函数也可以作为变量传入 3.支持闭包:有了闭包 就能返回函数 4.有限度的支持匿名函数
    查看全部
  • 编写无参数decorator Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数。 使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写 f = decorate(f) 这样的代码。 考察一个@log的定义: def log(f): def fn(x): print 'call ' + f.__name__ + '()...' return f(x) return fn 对于阶乘函数,@log工作得很好: @log def factorial(n): return reduce(lambda x,y: x*y, range(1, n+1)) print factorial(10) 结果: call factorial()... 3628800 但是,对于参数不是一个的函数,调用将报错: @log def add(x, y): return x + y print add(1, 2) 结果: Traceback (most recent call last): File "test.py", line 15, in <module> print add(1,2) TypeError: fn() takes exactly 1 argument (2 given) 因为 add() 函数需要传入两个参数,但是 @log 写死了只含一个参数的返回函数。 要让 @log 自适应任何参数定义的函数,可以利用Python的 *args 和 **kw,保证任意个数的参数总是能正常调用: def log(f): def fn(*args, **kw): print 'call ' + f.__name__ + '()...' return f(*args, **kw) return fn 现在,对于任意函数,@log 都能正常工作。
    查看全部
  • 装饰器
    查看全部
  • 装饰器:@语法:简化装饰器
    查看全部
  • def is_not_empty(s): return s and len(s.strip()) > 0 print filter(lambda s :s and len(s.strip()) > 0, ['test', None, '', 'str', ' ', 'END'])
    查看全部
  • >>> sorted([1, 3, 9, 5, 0], lambda x,y: -cmp(x,y)) [9, 5, 3, 1, 0] 返回函数的时候,也可以返回匿名函数: >>> myabs = lambda x: -x if x < 0 else x >>> myabs(-1) 1 >>> myabs(1) 1
    查看全部
  • >>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]) [1, 4, 9, 16, 25, 36, 49, 64, 81]
    查看全部
  • 考察下面的函数 f: def f(j): def g(): return j*j return g 它可以正确地返回一个闭包g,g所引用的变量j不是循环变量,因此将正常执行。 在count函数的循环内部,如果借助f函数,就可以避免引用循环变量i。 参考代码: def count(): fs = [] for i in range(1, 4): def f(j): def g(): return j*j return g r = f(i) fs.append(r) return fs f1, f2, f3 = count() print f1(), f2(), f3()
    查看全部
    0 采集 收起 来源:python中闭包

    2015-04-02

  • 用@property把grade修饰成属性
    查看全部
    0 采集 收起 来源:python中 @property

    2015-04-02

  • 在函数内部定义的函数和外部定义的函数是一样的,只是他们无法被外部访问: def g(): print 'g()...' def f(): print 'f()...' return g 将 g 的定义移入函数 f 内部,防止其他代码调用 g: def f(): print 'f()...' def g(): print 'g()...' return g 但是,考察上一小节定义的 calc_sum 函数: def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum 注意: 发现没法把 lazy_sum 移到 calc_sum 的外部,因为它引用了 calc_sum 的参数 lst。 像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。
    查看全部
    0 采集 收起 来源:python中闭包

    2015-04-02

  • 但是,如果返回一个函数,就可以“延迟计算”: def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum # 调用calc_sum()并没有计算出结果,而是返回函数: >>> f = calc_sum([1, 2, 3, 4]) >>> f <function lazy_sum at 0x1037bfaa0> # 对返回的函数进行调用时,才计算出结果: >>> f() 10 由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。
    查看全部
  • 请注意区分返回函数和返回值: def myabs(): return abs # 返回函数 def myabs2(x): return abs(x) # 返回函数调用的结果,返回值是一个数值 # 调用calc_sum()并没有计算出结果,而是返回函数: >>> f = calc_sum([1, 2, 3, 4]) >>> f <function lazy_sum at 0x1037bfaa0> # 对返回的函数进行调用时,才计算出结果: >>> f() 10
    查看全部

举报

0/150
提交
取消
课程须知
本课程是Python入门的后续课程 1、掌握Python编程的基础知识 2、掌握Python函数的编写 3、对面向对象编程有所了解更佳
老师告诉你能学到什么?
1、什么是函数式编程 2、Python的函数式编程特点 3、Python的模块 4、Python面向对象编程 5、Python强大的定制类

微信扫码,参与3人拼团

意见反馈 帮助中心 APP下载
官方微信
友情提示:

您好,此课程属于迁移课程,您已购买该课程,无需重复购买,感谢您对慕课网的支持!