为了账号安全,请及时绑定邮箱和手机立即绑定

从天津百货大楼 5 病例“迷局”见新冠病毒传播路径

image

天津某百货大楼内部相继出现 5 例新冠肺炎确诊病例,从起初的 3 个病例来看,似乎找不到任何流行病学上的关联性。在这种背景之下,作为技术人员可以通过什么技术来找寻病例之间的联系呢?

摘要

最初,nCoV 新冠病毒的扩散过程是由一个人(节点)向各其他人(节点)扩散的树状结构,但随着病毒的变异和人员交叉感染、“百家宴”、“联欢会”、“春运”等人员聚集,疫情扩散为网状结构。可以使用图数据库来存储相关人员、地理位置、感染时间等数据,本文将使用图数据库 Nebula Graph 作为工具,带大家一起探讨疫情的传播路径,并找到相关的疑似病例。

天津案例简述

下面用 Usr1、Usr2、Usr3、Usr4、Usr5 来代指这 5 例病例,看一下他们的行为轨迹:

Usr1 信息:

  • Usr1 于 1 月 24 日开始发热,在 1 月 22 日至 1 月 30 日期间在天津百货大厦 A 区工作,于 1 月 31 日确诊;

  • Usr2 信息:Usr2 为 Usr1 丈夫,于 1 月 25 日开始出现腹泻症状,于 2 月 1 日确诊;

  • Usr3 信息:Usr3 于 1 月 18 日接触过一个疑似病例,而后在天津百货大厦 B 区工作,于 1 月 24 日开始发热,于 2 月 1 日确诊;

  • Usr4 信息:Usr4 于 1 月 12 日、13 日接触过疑似病例,而后在天津百货大厦 C 区工作,于 1 月 21 日开始发热,于 2 月 1 日确诊;

  • Usr5 信息:Usr5 于 1 月 23 日下午 16 点到 23 点到过天津百货大厦 A、B、C 区,1 月 29 日开始发热,2 月 2 日确诊;

下面我们来建立一个传播路径的模型。

nCoV 新冠病的数据分析

以我们现有的资料显示,本次 nCoV 的传播路径为人传人(图 Demo1),即一个点通过特定访问路径连接到一个点。单个节点看来传播路径为一个树形结构(图 Demo2)——确诊病人 A 感染 B,B 再感染 C,C 再感染 D…。根据现在疫情传播情况,存在多个确诊病人,所以整个传播链路呈网状结构(图 Demo3)。而无论是树形结构还是网状结构都很适合用图(网络)这种数据结构来存储、查询和分析。

image

图模型

在建模之前我们需要清楚人和人之间的关系载体是什么?根据现有的病例信息,我们知道 A 和 B 会的接触场景最常见的是:**同一个时间段逗留在某个相同的空间。**这也是本次疫情筛选需隔离人群的重要指标:是否和确诊 / 疑似病例在酒店、火车、超市有过密切接触。

image

可见最小模型中有两类节点 PersonSpace ,关系为 stay 。最小模型有了,那么我们需要 Person 和 Space 的什么信息呢?

Person 类型节点的属性:

  • _ID:_Person 的身份证,用来标识人

  • _HealthStatus _:健康状态,有 2 种状态

  • Health:健康

  • Sick:生病

  • SickTime:发热开始时间,可以用来追溯病人发病的先后次序

Space 类型节点的属性:

  • ID:Space ID,用来唯一标识 space

  • Address:space 地址

image

我们构建完 Person 和 Space 的模型之后,再构建人和位置之间的关系:

在 stay 关系上,记录有逗留的起始时间终止时间。这样就可以帮助我们判断两个人是否有过时间和空间上的交集。

天津案例的建模

构建完最小模型之后,我们来分析一下天津病例中的信息,将模型应用在这个案例中。并通过图数据库 Nebula Graph 构建病例间关系、找寻病例1 的发病原因——病例1 怎么被传染的,及病例1 确诊后我们需要观察/隔离哪些人

整个模型的示意如下:

image

数据录入

Usr1:

  • Person 信息:ID 2020020201,HealthStatus:Sick,SickTime:20200124;

  • Stay Time:起始时间 1 月 23 日 12 点,终止时间 18 点;

  • Place 信息:天津百货大厦 A 区;

  • Stay Time:起始时间 1 月 23 日 18 点,终止时间 24日 8 点;

  • Place 信息:天津市和平区 A 小区;

Usr2:

  • Person 信息:ID 2020020202,HealthStatus:Sick,SickTime:20200125;

  • Stay Time:起始时间 1 月 23 日 12 点,终止时间 23 点;

  • Place 信息:天津市和平区 A 小区;

Usr3:

  • Person 信息:ID 2020020203,HealthStatus:Sick,SickTime:20200125;

  • Stay Time:起始时间 1 月 23 日 15 点,终止时间 19 点;

  • Place 信息:天津百货大厦 B 区;

  • Stay Time:起始时间 1 月 23 日 12 点,终止时间 23 点;

  • Place 信息:天津市河西区 B 小区;

Usr4:

  • Person 信息:ID 2020020204,HealthStatus:Sick,SickTime:20200121;

  • Stay Time:起始时间 1 月 23 日 11 点,终止时间 20 点;

  • Place 信息:天津南开区某火锅店;

  • Stay Time:起始时间 1 月 23 日 20 点,终止时间 23 点;

  • Place 信息:天津市滨海区 B 小区;

Usr5:

  • Person 信息:ID 2020020205,HealthStatus:Health,SickTime:NULL(无);

  • Stay Time:起始时间 1 月 23 日 11 点,终止时间 15 点;

  • Place 信息:天津南开区某火锅店;

  • Stay Time:起始时间 1 月 23 日 16 点,终止时间 23 点;

  • Place 信息:天津百货大厦 A、B、C 区;

将它导入到 NebulaGraph 中, 建立人和空间之间的关系。这里以 Usr1 的轨迹为例,其余几份病例类似。


-- 插入 Usr1

INSERT VERTEX person(ID, HealthStatus, SickTime) VALUES 1:(2020020201, ‘Sick’, '2020-01-24');

-- 插入 位置 “天津百货大厦 A 区”

INSERT VERTEX place(name) VALUES 101:("天津百货大厦 A 区")

-- Usr1 到 “天津百货大厦 A 区”

INSERT EDGE stay (start_time, end_time) VALUES 1 -> 101: ('2020-01-23 12:00:00''2020-01-23 18:00:00')

-- 插入 位置 “天津市和平区 A 小区”

INSERT VERTEX place(name) VALUES 102:("天津市和平区 A 小区")

-- Usr1 回家

INSERT EDGE stay (start_time, end_time) VALUES 1 -> 102: ('2020-01-23 18:00:00''2020-01-24 8:00:00')

数据导入后,让我们一步步揭开病例1 被感染之谜:

1. 查询 Usr1 在 1 月 23 日 15 点至 23 点之间去过哪里


$PlaceUsr1Goto = GO FROM 1 OVER stay WHERE stay.start_time > '2020-01-23 15:00:00' AND

stay.start_time < '2020-01-23 23:00:00'

YIELD stay._dst AS placeid

2. 查询这段时间 Usr1 是否接触过任何(已发病的)病例


GO FROM $PlaceUsr1Goto OVER stay REVERSELY WHERE $$.person.HealthStatus == 'Sick'

AND $$.person.SickTime <= "2020-01-23"

很奇怪,在 Usr1 发病的时候(2020-01-24),他接触的人群里面并没有发热患者。那会不会是这些人又接触过其他的患者呢(从而成为携带者),让我们继续分析。

3. 查询这些人又接触过谁


$PersonUsr1Meet = GO FROM $PlaceUsr1Goto OVER stay REVERSELY YIELD stay._dst AS id

$PlaceThosePersonGoto = GO FROM $PersonUsr1meet.id OVER stay YIELD stay.start_time AS start

stay.end_time AS end

GO FROM $PlaceThosePersonGoto.id FROM stay REVERSELY

WHERE $$.person.HealthStatus == 'Sick'

AND $$.person.SickTime <= "2020-01-23" -- 在此之前已经发病

stay.start_time > $PlaceTHosePersonGoto.start

AND stay.end_time < $PlaceThosePersonGoto.end -- 并且有过接触

我们发现,虽然 Usr1 在 1 月 23 日 12 点到 1 月 24 日 8 点之间接触的人(Usr2, Usr5)都还没有发热,但是 Usr5 却在之前接触过发热病人 Usr4。至此,我们找到了这条传播链路:

Usr4 在 1 月 21 日发病。发病后,他仍前往天津南开区某火锅店(1 月 23 日 11 点- 20 点)。在这里,他接触到(当时健康的)Usr5(1 月 23 日 11 点-15 点)。在接触过程中使得 Usr5 成为一个携带者。之后 Usr5 前往天津百货大厦 A、B、C 区( 1 月 23 日 16 - 23 点),在这段时间内,他将病毒传染给在 A 区上班的 Usr1(1 月 23 日 12 点 - 18 点)。最终 Usr1 在 1 月 24 日发病。

4. 之后排查需要隔离哪些人

Usr1 确诊之后,我们需要查看她在哪些时候到过哪些地方。而对应这个时间段相同地点内,又有哪些人同她接触。 我们判断这些亲密接触者,需要重点隔离和观察。


GO FROM 1 OVER stay YIELD stay.start_time AS usr1_start,

stay.end_time AS usr1_end, stay._dst AS placeid

| GO FROM $placeid OVER stay REVERSELY WHERE

stay.start_time > usr1_start AND stay.start_time < usr1_end

YIELD $$.person.ID

可以发现 Usr1 和 Usr2 在天津市和平区 A 小区有过交集,这使得 Usr2 需要被重点观察。

传播路径可视化展示

上面这段分析过程,也可以使用图形化界面的方式来交互分析,这样更加直观。

image

当然,如果有非常大批量的关注点(例如上千万离开湖北的潜在人员和他们的二次三次传播轨迹),通过批量程序查询的方式会更加高效。

小结

由于春节返乡和一些不可描述的影响,导致冠状病毒的大面积扩散。从报道和社交媒体上可以看到,各个社区、村庄、企业都采用了相当严格的隔离措施,要求个人每日汇报行踪和健康状态,并密切跟踪从疫区来的人员。这样十几亿人的隔离和追踪需要极大的人力物力和动员能力,充分体现了“集中力量办大事”的制度优越性。

但另外一方面,这样的自我申报和层层统计,非常依赖个人的自觉,也依赖于汇报体系的响应速度。特别是当生死攸关(或者一刀切的歧视政策)的时候,个人反而有很强的动机隐瞒过去的行为和病史,导致未能得到及时的隔离和救治,也极大的影响了需要专业分工合作的现代经济生产活动。

另外一方面,随着大数据技术的发展和智能设备的普及,使得安防、运营商、交通、医疗部门的数据体系已经建立的较为全面。

在天津这个案例中,只选取了少数几个病例和场所作为示意,我们相信如果能够结合前述数据体系,并通过采用新的大数据和人工智能技术,能够极大提高定位和隔离疑似患者的速度,大大减少各种“有效人传人”和“超级毒王”的发生,减少一线医疗和社区工作人员的压力。也能降低全社会的全面隔离时间,尽快恢复经济活动。

image

image

参考资料

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消