线性回归可能是统计学和机器学习中最知名且易于理解的算法之一。
它不就是一项起源于统计学的技术吗?
预测建模主要关注的是让模型的误差最小化,或者说,在可以解释的前提下,尽可能作出最准确的预测。我们会借用,重用,甚至是窃取许多不同领域(包括统计学)的算法,并将其用于上述的目标。
线性回归通常表示为这样一个等式:
通过查找特定的称为系数(B)的输入变量的权重,来描述最符合输入变量(x)和输出变量(y)之间关系的直线。
例如:y = B0 + B1 * x
我们将在给定输入x的情况下预测y。线性回归学习算法的目标是找到系数B0和B1的值,并且让预测值和真实值之间的误差最小化。
可以使用不同的技术从数据中学习(训练)线性回归模型,例如,最小二乘法的线性代数解,和梯度下降优化法。
线性回归已经存在了200多年,得到了广泛研究。使用此技术的要点是删除非常相似(相关)的变量,并尽可能消除数据中的噪声。
这是一种快速而简单的技术,值得尝试的第一个好算法。
作者:首席IT民工
链接:https://www.jianshu.com/p/f4da91acbad7
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦