spring请求线程池
很多同学在进行编程学习时缺乏系统学习的资料。本页面基于spring请求线程池内容,从基础理论到综合实战,通过实用的知识类文章,标准的编程教程,丰富的视频课程,为您在spring请求线程池相关知识领域提供全面立体的资料补充。同时还包含 safari浏览器、samba、SAMP 的知识内容,欢迎查阅!
spring请求线程池相关知识
-
MySQL线程池一、相关概念MySQL连接池:连接池通常实现在Client端,是指应用(客户端)预先创建一定的连接,利用这些连接服务于客户端所有的DB请求。如果某一个时刻,空闲的连接数小于数据库的请求数,则需要将请求排队,等待空闲连接处理。通过连接池可以复用连接,避免连接的频繁创建和释放,从而减少请求的平均响应时间,并且在请求繁忙时,通过请求排队,可以缓冲应用对数据库的冲击。MySQL线程池:线程池实现在Server端,通过创建一定数量的线程服务Clientl连接请求,相对于one-conection-per-thread的一个线程服务一个连接的方式,线程池服务的最小单位是语句,即一个线程可以对应多个活跃的连接。通过线程池,可以将Server端的服务线程数控制在一定的范围,减少了系统资源的竞争和线程上下文切换带来的消耗,同时也避免出现高连接数导致的高并发问题。MySQL线程缓存:线程缓存实现在Server端,Client连接对应的线程会被缓存起来,缓存的线程数量由 thread_cache_size大小决定。当服务器不断有
-
谈谈线程池:ThreadPoolExecutor1、线程池介绍在web开发中,服务器需要接受并处理请求,所以会为一个请求来分配一个线程来进行处理。如果每次请求都新创建一个线程的话实现起来非常简便,但是存在一个问题:如果并发的请求数量非常多,但每个线程执行的时间很短,这样就会频繁的创建和销毁线程,如此一来会大大降低系统的效率。可能出现服务器在为每个请求创建新线程和销毁线程上花费的时间和消耗的系统资源要比处理实际的用户请求的时间和资源更多。所以线程池就出现了。线程池为线程生命周期的开销和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。使用线程池的好处:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。Java中的线程池是用ThreadPoolExecutor类来实现的. 本文就结合JDK 1.8对
-
Java并发——线程池ThreadPoolExecutor线程池作用相对于为每个请求都创建一个线程,线程池通过重用现有的线程而不是创建新线程,可以在处理多个请求时分摊在线程创建和销毁过程中产生的巨大开销,当请求到达时,工作线程通过已经存在,不会由于等待创建线程而延迟任务的执行,从而提高响应性。通过适当调整线程池的大小,可以创建足够多的线程以便使处理器保持忙碌状态,同时还可以防止过多线程相互竞争资源而使应用程序耗尽内存或失败线程池处理流程1)判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程2)判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程3)判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务示意图:创建线程池ThreadPoolExecutor构造方法: public ThreadPoolExecutor(int co
-
详解线程池的作用及Java中如何使用线程池服务端应用程序(如数据库和 Web 服务器)需要处理来自客户端的高并发、耗时较短的请求任务,所以频繁的创建处理这些请求的所需要的线程就是一个非常消耗资源的操作。常规的方法是针对一个新的请求创建一个新线程,虽然这种方法似乎易于实现,但它有重大缺点。为每个请求创建新线程将花费更多的时间,在创建和销毁线程时花费更多的系统资源。因此同时创建太多线程的 JVM 可能会导致系统内存不足,这就需要限制要创建的线程数,也就是需要使用到线程池。 一、什么是 Java 中的线程池? 线
spring请求线程池相关课程
spring请求线程池相关教程
- 3. 线程池模型 线程池模型的结构如下:从图中可以看出,线程池模型的程序结构如下:创建一个监听线程,通常会采用 Java 主线程作为监听线程。创建一个 java.net.ServerSocket 实例,调用它的 accept 方法等待客户端的连接。服务器预先创建一组线程,叫做线程池。线程池中的线程,在服务运行过程中,一直运行,不会退出。当有新的客户端和服务器建立连接,accept 方法会返回 java.net.Socket 对象,表示新的连接。服务器一般会创建一个处理 java.net.Socket 逻辑的任务,并且将此任务投递给线程池去处理。然后,监听线程返回,继续调用 accept 方法,等待新的客户端连接。线程池调度空闲的线程去处理任务。在新新任务中调用 java.net.Socket 的 recv 和 send 方法和客户端进行数据收发。当数据收发完成后,调用 java.net.Socket 的 close 方法关闭连接,任务完成。线程重新回归线程池,等待调度。下来,我们同样通过示例代码演示一下线程池模型的编写方法。程序功能和每线程模型完全一致,所以我们只编写服务端程序,客户端程序采用每线程模型的客户端。示例代码如下:import java.io.*;import java.net.ServerSocket;import java.net.Socket;import java.util.concurrent.Callable;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class TCPServerThreadPool{ // 服务监听端口号 private static final int PORT =56002; // 开启线程数 private static final int THREAD_NUMS = 20; private static ExecutorService pool = null; // 创建一个 socket Task 类,处理数据收发 private static class SockTask implements Callable<Void> { private Socket sock = null; public SockTask(Socket sock){ this.sock = sock; } @Override public Void call() throws Exception { try { while (true){ // 读取客户端数据 DataInputStream in = new DataInputStream( new BufferedInputStream(sock.getInputStream())); int msgLen = in.readInt(); byte[] inMessage = new byte[msgLen]; in.read(inMessage); System.out.println("Recv from client:" + new String(inMessage) + "length:" + msgLen); // 向客户端发送数据 String rsp = "Hello Client!\n"; DataOutputStream out = new DataOutputStream( new BufferedOutputStream(sock.getOutputStream())); out.writeInt(rsp.getBytes().length); out.write(rsp.getBytes()); out.flush(); System.out.println("Send to client:" + rsp + " length:" + rsp.getBytes().length); } } catch (IOException e) { e.printStackTrace(); } finally { if (sock != null){ try { sock.close(); } catch (IOException e) { e.printStackTrace(); } } } return null; } } public static void main(String[] args) { ServerSocket ss = null; try { pool = Executors.newFixedThreadPool(THREAD_NUMS); // 创建一个服务器 Socket ss = new ServerSocket(PORT); while (true){ // 监听新的连接请求 Socket conn = ss.accept(); System.out.println("Accept a new connection:" + conn.getRemoteSocketAddress().toString()); pool.submit(new SockTask(conn)); } } catch (IOException e) { e.printStackTrace(); } finally { if (ss != null){ try { ss.close(); } catch (IOException e) { e.printStackTrace(); } } } }}
- 2.3 线程池 假设您要处理数百个项目,为每个项目启动一个线程将破坏您的系统资源。它看起来像这样:pages_to_crawl = %w( index about contact ... )pages_to_crawl.each do |page| Thread.new { puts page }end如果这样做,您将与服务器启动数百个连接,因此这可能不是一个好主意。一种解决方案是使用线程池。线程池使您可以在任何给定时间控制活动线程的数量。您可以建立自己的池,但是我不建议你这样去做,Ruby有一个Gem可以为您完成这个操作。实例:require 'celluloid'class Worker include Celluloid def process_page(url) puts url endendpages_to_crawl = %w( index about contact products ... )worker_pool = Worker.pool(size: 5)# If you need to collect the return values check out 'futures'pages_to_crawl.each do |page| worker_pool.process_page(page)end这次只有5个线程在运行,完成后他们将选择下一个项目。
- 3.3 线程池配置模块详解 参数名称:coreSize参数说明:该属性用来设置核心线程池的大小,默认为 10 。参数名称:maximumSize参数说明:该属性是用来设置线程池的最大线程数量,默认为 10 ,在 1.5.9 版本之前,线程池的核心线程数量总是与线程池的最大线程数量保持一致。参数名称:allowMaximumSizeToDivergeFromCoreSize参数说明:该属性是用来设置,是否启用 maximumSize ,即设置线程池的 coreSize 和 maximumSize 的值不一致,当被设置为 true 时,该属性生效,即线程池的最大线程数量大于或等于线程池的核心线程数量。该属性的默认值为 false 。参数名称:keepAliveTimeMinutes参数说明:该参数是用来设置线程的存活时间,即在线程池的核心线程数量小于线程池的最大线程数量时,一个线程的可运行时长。该属性的默认值为 1 分钟。
- 3.1 线程池隔离实现服务资源隔离 通过对处理项目中的工作线程的隔离,来避免工作线程处理接口时所产生的阻塞行为,从而保证工作线程可以顺利地调用接口来满足业务需要。而隔离工作线程的方式,就是为每个接口分配一个线程池,并在线程池中维护一定数量的线程,这样,当上述的接口 2 发生服务资源等待时,由于每个接口都分配了不同的线程池,所以不会影响到后续的 3 4 5 接口,如下图所示:线程池隔离实现原理可以看到,由于为每个服务接口均分配了不同的线程池,所以在接口 2 出现服务等待时,并不会影响后续接口的调用,从而保证了业务的顺利进行。我们继续以 hello 方法为例,来看如何实现线程池隔离。@RequestMapping(value = "hello", method = RequestMethod.GET)@HystrixCommand(threadPoolKey = "HelloHystrix", threadPoolProperties = { @HystrixProperty(name = "coresize", value = "2"), @HystrixProperty(name = "allowMaximumSizeToDivergeFromCoreSize", value = "true"), @HystrixProperty(name = "maximumSize", value = "2"), @HystrixProperty(name = "maxQueueSize", value = "2")})@ResponseBodypublic String hello() throws InterruptedException { return "helloWorld";}代码解释:第 2 行,我们通过配置 HystrixCommand 注解的 threadPoolKey 属性来为本接口分配一个名称为 HelloHystrix 的线程池。第 3 行,我们通过配置 threadPoolProperties 中的参数属性,来维护 HelloHystrix 线程池中的核心线程数量、最大线程数量。通过添加上述注解并配置其中的属性,我们就可以通过线程池隔离的方式来实现服务资源隔离。Tips: 线程池中的线程数量,一定要根据该接口所实现的业务需求来设置,设置过多,则会浪费资源空间,设置过少,则不能支撑业务需要,所以配置线程数量一定要谨慎。
- 3. 单 Reactor 多线程模型 架构图说明:Reactor 通过 Select 监听客户端请求事件,受到事件之后它本身不负责处理,而是把事件转发出去;如果是建立连接请求,则由 Acceptor 进行处理;如果不是建立连接请求,则转发给 Handler 负责处理;Handler 也不负责处理具体的业务,而是通过 read () 方法读取数据,然后再次分发给线程池去进行处理;线程池会分配一个子线程去处理具体的业务,处理完成之后把结果返回给 Handler,并释放连接给连接池。模式的优点:可以充分的利用多核 CPU 的资源,提高处理任务的性能;把业务处理从整个模型中剥离并丢给线程池去处理,避免某个业务处理或者某次业务处理太慢导致其他业务处理受到影响;相比传统 I/O 堵塞模型,如果一旦没有客户端发起请求,那么线程池将不会处于堵塞状态,而是释放并且可以处理其他的业务,对于性能调优来说,最宝贵的就是线程资源,一旦线程资源得不到释放,整个应用将会卡掉。模式的缺点:多线程之间的数据共享和访问比较复杂,比如:Handler 给 Worker 线程分发数据;Reactor 处理所有事件的监听、转发、响应,都是单线程,在高并发的情况下,负责处理业务的 Worker 可能正常,但是 Reactor 就会容易遇到性能瓶颈;Reactor 如果一旦出现故障,那么整个通讯就会故障。通过以上的分析,其实也是不推荐使用这种模式,除非客户端数量比较少,类似局域网内部的项目,但是我们还是需要了解整个模型是如何演变过来的,而不是一上来就讲解最好的那个方案。只有把整个演变过程了解了,我们才能更好的了解整个线程模型可能存在的性能瓶颈在哪里。
- 4. 主从多线程模型 架构图分析:主要分为三个模块,分别为 Reactor 主线程、Reactor 子线程、Worker 线程池。其中 Reactor 主线程可以对应多个 Reactor 子线程,也就是说,一个 MainReactor 对应多个 SubReactor;Reactor 主线程的 MainReactor 对象通过 select 监听客户端连接事件,收到事件之后,通过 Acceptor 处理连接事件;当 Acceptor 处理连接事件之后,MainReactor 将连接事件分配给 Reactor 子线程的 SubReactor 进行处理;SubReactor 将连接加入到连接队列进行监听,并且创建 Handler 处理对应的事件。一旦有新的事件(非连接)则分配给 Handler 进行处理;Handler 通过 read () 方法读取数据,并且分发给 Worker 线程池去做业务处理;Worker 线程池分配线程去处理业务,处理完成之后把结果返回给 Handler;Handler 收到 Worker 线程返回的结果之后,再通过 send () 方法返回给客户端。方案的优点:责任明确,单一功能拆分的更细,Reactor 主线程负责接收请求,不负责处理请求;Reactor 子线程负责处理请求。并发量很高的情况,可以减轻单个 Reactor 的压力,并且提高处理速度;Reactor 子线程只负责读取数据和响应数据,耗时的业务处理则丢给 Worker 线程池去处理。这种通过把完整任务层层分发下去,每个组件需要处理的内容就会变的很简单,处理起来效率自然会很高。方案的缺点:编程复杂度非常的高;即使一个 Reactor 主线程对应多个 Reactor 子线程,Reactor 主线程还是会存在单节点故障问题,不过真实业务场景当中,如果考虑单节点故障问题的话,一般都是通过分布式集群(Netty 集群)的方式去解决,而不是靠单节点的线程模型去解决,这里大家了解一下即可。总的来说,主从多线程模型是应用比较多的一种线程模型,包括 Nginx 主从 Reactor 多线程模型、Memcached 主从多线程模型、Netty 主从多线程模型等知名开源框架的。
spring请求线程池相关搜索
-
s line
safari浏览器
samba
SAMP
samplerate
sandbox
sanitize
saper
sas
sass
save
smarty模板
smil
smtp
snapshot
snd
snmptrap
soap
soapclient
soap协议