水仙花数java代码
很多同学在进行编程学习时缺乏系统学习的资料。本页面基于水仙花数java代码内容,从基础理论到综合实战,通过实用的知识类文章,标准的编程教程,丰富的视频课程,为您在水仙花数java代码相关知识领域提供全面立体的资料补充。同时还包含 safari浏览器、samba、SAMP 的知识内容,欢迎查阅!
水仙花数java代码相关知识
-
Python实现水仙花数水仙花数(Narcissistic number)也被称为超完全数字不变数(pluperfect digital invariant, PPDI)、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数(Armstrong number),水仙花数是指一个 n 位数(n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身(例如:1^3 + 5^3+ 3^3 = 153)《摘自百度百科》。下面给出三位数水仙花Python代码实现::# 循环遍历出所有三位数for tmp in range(100, 1000): # 取余找出个位数 a = tmp % 10 # 求商取整找出百位数 b = int(tm
-
[硕.Love Python] 水仙花数1.题目: 水仙花数是指一个n位数(n≥3),它的每个位上的数字的n次幂之和等于它本身。如: 1^3+5^3+3^3=153, 8^4+2^4+0^4+8^4 = 8208. 求100~9999之间所有的水仙花数 2.源码: [n for n in xrange(100, 10000) if (lambda sn: sum(int(x) ** len(sn) for x in sn) == n)(str(n))] 3.思路:拆开 -> 乘方 -> 加和 -> 比较.
-
C语言算法之打印水仙花数专注职业教育&教研设备+自媒体链接+智慧投资。只要肯花时间,一定会有所成长。学技术,重在日拱一卒、一点一滴的积累。今天一起分析C语言的算法之5打印所有水仙花数。算法题目: 打印所有水仙花数。 所谓水仙花是指一个三位数,其各个位的数字的立方和等于该数。编程思路:1、用三个for循环嵌套实现; 2、三个循环,判断个位的立方加十位的立方加百位的立方是否等于某个数,如果相等,则证明是水仙花数。“打印所有水仙花数”程序范例#include<stdio.h>void main(){ int a,b,c,s; for(a=1;a<=9;a++) { for(b=0;b<=9;b++) { for(c=0;c<=9;c++) { if(a*100+b*10+c==a*a*a+b*b*b+c*c*c) { s=a*100+b*10+c; printf("%d\n",s); }
-
#6.求水仙花数public class TestNNN { static int a = 0; static int b = 0; static int c = 0; public static void main(String[] args) { /** * 水仙花数 * 1. 一定是3位数 * 2. 每一位的立方,加起来恰好是这个数本身,比如153=1*1*1+5*5*5+3*3*3 */ for (int i = 100; i < 999; i++) { a = i / 100; //百位 b = i / 10 % 10; //十位 c = i % 10; //个位 double sum = Math.pow(a, 3) + Math.pow(b, 3) + Math.pow(c, 3); if
水仙花数java代码相关课程
-
7个经典应用诠释Java算法精髓,让你在实际开发如鱼得水 采用基础的Java语言,通过7款经典好玩的游戏,bobo老师带你进入不一样的算法世界,体验算法在实际开发中的应用
讲师:liuyubobobo 中级 1761人正在学习
水仙花数java代码相关教程
- 4.JAVA 代码实现 在说明求解钢条切割问题的整个过程之后,接下来,我们看看如何用 java 代码实现钢条切割问题的求解。import java.util.ArrayList;import java.util.List;public class ActivitySelect { public static void main(String args[]){ //活动集合a int a[] = {1,2,3,4,5,6,7,8,9,10,11}; //活动开始时间集合s int s[] ={1,3,0,5,3,5,6,8,8,2,12}; //活动结束集合f int f[] ={4,5,6,7,9,9,10,11,12,14,16}; //活动选择存放集合A List<Integer> A = new ArrayList<>(); int n = s.length; A.add(a[0]); int k =0; //遍历选择活动 for (int i=1; i<n; i++){ if(s[i] >= f[k]){ A.add(a[i]); k = i; } } System.out.println("活动选择问题的选择活动结果为:"); System.out.println(A); }}运行结果如下:活动选择问题的选择活动结果为:[1, 4, 8, 11]代码中第 7 行至第 14 行分别初始化活动和对应的开始时间、结束时间以及活动选择过程中存放选择的活动集合,代码的第 16 至 18 行对应着开始的活动选择初始化工作,因为 java 数组的下标从 0 开始,所以这里面我们第一个选择的活动为 a [0],而不是伪代码中的 a [1]。代码的第 20 行至 26 行 for 循环遍历活动选择,按照贪心选择的方法选择对应的活动,放入最终的结果集 A 中 ,代码的 28 行 29 行输出相关的活动选择结果。
- 4. Java 代码实现 在说明希尔排序的整个过程之后,接下来,我们看看如何用 Java 代码实现希尔排序算法。import java.util.Arrays;public class ShellSort { public static void main(String[] args) { //初始化需要排序的数组 int array[] = {9, 2, 11, 7, 12, 5}; //初始化希尔排序的增量为数组长度 int gap = array.length; //不断地进行插入排序,直至增量为1 while (true) { //增量每次减半 gap = gap/2; for (int i = 0; i < gap; i++) { //内部循环是一个插入排序 for (int j = i + gap; j < array.length; j += gap) { int temp = array[j]; int k = j - gap; while (k >= 0 && array[k] > temp) { array[k + gap] = array[k]; k -= gap; } array[k + gap] = temp; } } //增量为1之后,希尔排序结束,退出循环 if (gap == 1) break; } //打印出排序好的序列 System.out.println(Arrays.toString(array)); }}运行结果如下:[2, 5, 7, 9, 11, 12]代码中的第 8 行初始化一个需要排序的数组,后面按照从小到大的排序规则,实现了数组的排序。第 12 行至 30 行是整个希尔排序的流程。第 14 行代码表示希尔排序中的增量每次整除 2 取得,第 17 行至 25 行是一个 for 循环结构,表明按照增量进行插入排序。最后第 32 行代码输出排序好的数组。
- 4. Java 代码实现 在说明冒泡排序的整个过程之后,接下来,我们看看如何用 Java 代码实现冒泡排序算法。import java.util.Arrays;public class BubbleSort { public static void main(String[] args) { //初始化需要排序的数组 int array[] = {9,2,11,7,12,5}; //对需要排序的数组进行排序 for (int i=1; i<array.length; i++){ //针对待排序序列中除了已经排序好的元素之外,重复排序工作 for(int j=0;j<array.length-i;j++){ //当相邻两个元素需要交换时,交换相邻的两个元素 if(array[j]>array[j+1]){ int temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; } } } //打印出排序好的序列 System.out.println(Arrays.toString(array)); }}运行结果如下:[2, 5, 7, 9, 11, 12]代码中的第 8 行初始化一个需要排序的数组,后面按照从小到大的排序规则,实现了数组的排序。第 11 行是外层循环,不断地重复排序工作。第 14 行是内层循环,不断地实现每一次 “冒泡” ,将最大的一个元素找出。第 17 至第 21 行实现当相邻两个元素需要交换时,交换相邻的两个元素的功能。第 25 行打印出排序好的数组。
- 4.JAVA 代码实现 在说明求解背包问题的整个过程之后,接下来,我们看看如何用 java 代码实现背包问题的求解。import java.util.ArrayList;import java.util.Collections;import java.util.List;public class Knapsack { /** * 物品内部类 */ private static class Item implements Comparable<Item>{ int type; double weight; double value; double unitValue; public Item(int type, double weight){ this.type = type; this.weight = weight; } public Item(int type, double weight,double value){ this.type = type; this.weight = weight; this.value = value; this.unitValue = value/weight; } @Override public int compareTo(Item o) { return Double.valueOf(o.unitValue).compareTo(this.unitValue); } } public static void main(String[] args){ //背包容量 double capacity = 30; //物品类型初始化数组 int[] itemType = {1,2,3,4,5}; //物品重量初始化数组 double[] itemWeight = {10,5,15,10,30}; //物品价值初始化数组 double[] itemValue = {20,30,15,25,10}; //初始化物品 List<Item> itemList = new ArrayList<>(); for(int i=0;i<itemType.length;i++){ Item item = new Item(itemType[i],itemWeight[i],itemValue[i]); itemList.add(item); } //物品按照单价降序排序 Collections.sort(itemList); //背包选择 List<Item> selectItemList = new ArrayList<>(); double selectCapacity = 0; for(Item item : itemList){ if( (selectCapacity + item.weight) <= capacity){ selectCapacity = selectCapacity + item.weight; Item selectItem = new Item(item.type,item.weight); selectItemList.add(selectItem); }else { Item selectItem = new Item(item.type, capacity-selectCapacity); selectItemList.add(selectItem); break; } } //选择结果输出 for (Item item : selectItemList){ System.out.println("选择了类型:"+ item.type+" 的物品,重量为:"+item.weight); } }}运行结果如下:选择了类型:2 的物品,重量为:5.0选择了类型:4 的物品,重量为:10.0选择了类型:1 的物品,重量为:10.0选择了类型:3 的物品,重量为:5.0代码中第 10 行至第 31 行定义了物品的一个内部类,用来存储一个物品的类型、重量、价值、单位重量的价值,并且实现在其中实现了一个对比函数。代码的第 35 至 42 行对应着开始的背包问题的初始化工作,分别初始化了背包容量、物品类型、物品重量、物品价值。代码的第 44 行至 51 行将所有物品按照物品内部类的格式加入数组,并且按照物品单位重量的价值进行降序排序。代码的第 53 行至第 66 行,按照背包问题的贪心选择方法选择对应的物品,并记录选择的物品类型及重量,放入到选择的物品列表中 ,代码的 69 行 71 行输出相关的物品选择结果。
- 4. Java 代码实现 在说明选择排序的整个过程之后,接下来,我们看看如何用 Java 代码实现选择排序算法。import java.util.Arrays;public class SelectSort { public static void main(String[] args) { //初始化需要排序的数组 int array[] = {9, 2, 11, 7, 12, 5}; //依次进行选择排序,每次找出最小的元素,放入待排序的序列中 for(int i=0;i<array.length;i++){ //记录最小元素min和最小元素的数组下标索引minIndex int min = array[i]; int minIndex = i; //在未排序的序列中找出最小的元素和对应数组中的位置 for(int j=i+1;j<array.length;j++){ if(array[j] < min){ min = array[j]; minIndex = j; } } //交换位置 int temp = array[i]; array[i] = array[minIndex]; array[minIndex] = temp; } //打印出排序好的序列 System.out.println(Arrays.toString(array)); }}运行结果如下:[2, 5, 7, 9, 11, 12]代码中的第 7 行初始化一个需要排序的数组,后面按照从小到大的排序规则,实现了数组的排序。第 10 行是外层 for 循环,不断地重复选择排序工作。第 17 行是内层循环,不断地实现每一次 “选择 “,在未排序的序列中找出最小的元素和对应数组中的位置。第 24 至第 27 行实现了将未排序好的序列中的最小元素与需要排序的位置的元素进行交换的功能。第 31 行打印出排序好的数组。
- 4.Java 代码实现 在说明快速排序的整个过程之后,接下来,我们看看如何用 Java 代码实现快速排序算法。import java.util.Arrays;public class QuickSort { public static void main(String[] args) { //初始化需要排序的数组 int array[] = {9, 2, 11, 7, 12, 5}; //快速排序 quickSort(array,0,array.length-1); //打印出排序好的序列 System.out.println(Arrays.toString(array)); } //快速排序 private static void quickSort(int[] array,int low, int high){ if(low < high){ //找到分区的位置,左边右边分别进行快速排序 int index = partition(array,low,high); quickSort(array,0,index-1); quickSort(array,index+1,high); } } //快速排序分区操作 private static int partition(int[] array, int low, int high){ //选择基准 int pivot = array[low]; //当左指针小于右指针时,重复操作 while (low < high){ while(low < high && array[high] >= pivot){ high = high - 1; } array[low] = array[high]; while (low < high && array[low] <= pivot){ low = low + 1; } array[high] = array[low]; } //最后赋值基准 array[low] = pivot; //返回基准所在位置,基准位置已经排序好 return low; }}运行结果如下:[2, 5, 7, 9, 11, 12]代码中的第 8 行初始化一个需要排序的数组,后面按照从小到大的排序规则,实现了数组的排序。第 15 行到底 22 行是快速排序的外部结构,应用分治思想递归求解。代码 25 行至 43 行是分区操作,完成基于基准数据的左右分区,并将基准数据放置在排序好的位置,并且返回基准所在的位置,进行后续的分治操作。
水仙花数java代码相关搜索
-
s line
safari浏览器
samba
SAMP
samplerate
sandbox
sanitize
saper
sas
sass
save
smarty模板
smil
smtp
snapshot
snd
snmptrap
soap
soapclient
soap协议