哈希相关知识
-
哈希表(Hash Table)概览: 简单来说,哈希表是一种依赖哈希函数组织数据,以达到常数级别时间复杂度,插入和搜索都非常高效的数据结构。 两种哈系表: 哈希集合是集合数据结构的实现之一,用于存储非重复值。 哈希映射是映射 数据结构的实现之一,用于存储(key, value)键值对。 大多数高级程序设计语言标准库里都内置了哈系表模板。 1、哈希表的原理 哈希表的关键思想是使用哈希函数将键映射到存储桶。更确切地说, 当我们插入一个新的键时,哈希函数将决定该键应该分配到哪个桶中,并将该键存储在相
-
哈希表(Hash Table)概览: 简单来说,哈希表是一种依赖哈希函数组织数据,以达到常数级别时间复杂度,插入和搜索都非常高效的数据结构。 两种哈系表: 哈希集合是集合数据结构的实现之一,用于存储非重复值。 哈希映射是映射 数据结构的实现之一,用于存储(key, value)键值对。 大多数高级程序设计语言标准库里都内置了哈系表模板。 1、哈希表的原理 哈希表的关键思想是使用哈希函数将键映射到存储桶。更确切地说, 当我们插入一个新的键时,哈希函数将决定该键应该分配到哪个桶中,并将该键存储在相
-
一致性哈希分布式经典结构 如图所示的结构, 当前端接收到请求时, 通过计算key的哈希值, 将哈希值模3, 然后分布到不同的后端服务器上但是, 这样的结构当添加或减少后端服务器时就暴露了问题, 每次添加或减少后端服务器, 放在服务器中的所有数据都要全部重新计算哈希, 将哈希值摸新的台数, 重新添加. 如此, 数据迁移的成本太高了, 由此引出了一致性哈希一致性哈希前端服务端结构不变, 以下都是后端服务器.假设哈希函数计算出的值在 0-2^64 范围内, 将其想想成一个环, 如下: 将服务器打在这个环上, 那么服务器也要有一个哈希值, 通过服务器唯一的标志来计算(ip, mac, hostname等), 如下: 当请求到来时, 计算请求的哈希值, 哈希值定会打在这个环上, 然后将请求发给顺时针找到的第一个服务器, 如下: 也就是找到比请求哈希值大的第一台服务器.实现这个结构后, 若是向服务器中添加一台, 只要找到原本负责这个区域的服务器, 然后将应该负责区域的数据拿过来并从原服务器中删除即可, 如下: 删除一台服务器也是
-
SQL Server2014 哈希索引原理SQL Server 2014推出的的新索引类型叫做 hash index。介绍hash index之前一定要介绍哈希函数这样会让大家更明白哈希索引的原理当一个key-value键值对传递给一个哈希函数的时候,经过哈希函数的计算之后,根据结果会把key-value键值对放在合适的hash buckets(哈希存储桶)里 举个栗子我们假设对10取模( % 10 )就是哈希函数。如果key-value键值对的key是1525 ,传递到哈希函数,那么1525 会存放在第五个bucket里因为5 as 1525 % 10 = 5。同样,537 会存放在第七个bucket ,2982 会存放在第二个bucket ,依次类推 同样,在hash index里面,哈希索引列会被传递给哈希函数做匹配(类似于java里面的HashMap的Map操作),匹配成功之后,索引列会被存储在匹配到的hash bucket里面的表里,这个表里会有实际的数据行指针,再根据实际的数据行指针查找对应的数据
哈希相关课程
哈希相关教程
- Ruby 的哈希 本章节我们学习另外一个可以组合多个的对象类——哈希,了解哈希是什么,如何创建一个哈希以及哈希对象的实例方法。
- 1.哈希索引 哈希索引基于哈希表实现,仅支持精确匹配索引所有列的查询。对于每行数据,存储引擎都会对所有的索引列计算出一个哈希码。哈希索引将所有的哈希码存储在索引中,同时保存指向每个数据行的指针。
- 8.2 访问哈希表 >>> db.hget('person', 'name')'ZhangSan'>>> db.hget('person', 'age')'20'方法 hget(hash_table, key) 获取哈希表 hash_table 中键为 key 对应的值在第 1 行,获取哈希表 ‘person’ 中键为 ‘name’ 的值在第 3 行,获取哈希表 ‘person’ 中键为 ‘age’ 的值>>> db.hexists('person', 'name')True>>> db.hexists('person', 'gender')False方法 hexists(hash_table, key) 返回哈希表 hash_table 是否包含键 key在第 1 行,获取哈希表 ‘person’ 是否包含 ‘name’在第 3 行,获取哈希表 ‘person’ 是否包含 ‘gender’
- 1. 什么是哈希 哈希是键值对的集合。—— 官方定义哈希是另一种非常有用且广泛使用的东西,可用于存储其他对象。与仅作为列表的数组不同,哈希表就像字典。我们通过键(key)来查找哈希中的值(value)。好比我们有一个英汉词典,我们通过查找“hello的单词来找到中文意思"你好",此时,“hello“就是作为键,而“你好”就是值。我们将哈希的每一对键和值称为键值对,每一个哈希可以拥有任意数量的键值对。
- 8.1 创建哈希表 >>> db.hset('person', 'name', 'ZhangSan')1>>> db.hset('person', 'age', 20)1方法 hset(hash_table, key, value),向哈希表 hash_table 增加一组键值对,键为 key、值为 value如果哈希表 hash_table 不存在,则创建一个新的哈希表创建一个哈希表 person,描述一个人,包括两项属性:name 和 age在第 1 行,为哈希表 person 增加一组键值对:键为 ‘name’、值为 ‘ZhangSan’在第 3 行,为哈希表 person 增加一组键值对:键为 ‘age’、值为 20>>> db.hlen('person')2方法 hlen(hash_table) 获取 hash_table 中键值对的数目
- 1.3 哈希索引的限制 哈希索引只支持等值查询,包括=、IN、<=>;哈希索引不存储字段值,只包含哈希值和行指针,不能使用索引中的值来避免读取行;哈希索引不是按照索引值顺序存储的,不能用于排序;哈希索引不支持部分索引列匹配查找,如在字段(last_name,first_name)创建哈希索引,此时需要查找last_name='Allen’的数据行,这种查询无法使用该哈希索引;哈希索引不支持范围查询,如查找所有姓氏在Allen和Bush之间的客户,这种查询无法使用哈希索引;如果出现很多哈希冲突(不同的索引列值有相同的哈希值),索引的维护成本是很高的,应尽量避免在选择性很低的字段上创建哈希索引。
哈希相关搜索
-
h1
h6
hack
hadoop
halt
hana
handler
hanging
hash
hashtable
haskell
hatch
hbase
hbuilder
hdfs
head
header
header php
headers
headerstyle