binary相关知识
-
Insus Binary Utility一个将数据流转换为binary(二进制)数据小工具,返回字符串。可以在三层架构中的二层程序处理数据流。使用时需要引用名称空间using Insus.NET;类别名称InsusBinaryUtility,需要实例化。下载地址:http://download.cnblogs.com/insus/library/InsusBinaryUtility.rar
-
linux采用binary方式安装mysql本文实例为大家分享了linux采用binary方式安装mysql的具体步骤,供大家参考,具体内容如下1、下载binary文件 在官网上下载 mysql-5.6.36-linux-glibc2.5-i686.tar.gz.2、解压文件并移动到/usr/local/mysql目录下?1tar -zxvf mysql-5.6.36-linux-glibc2.5-i686.tar.gz3、创建用户组和用户并配置?1234groupadd mysqluseradd mysql -g mysqlchown -R mysql /usr/local/mysql/chgrp -R mysql /usr/local/mysql/4、安装及初始化?12345678#安装mysql/usr/local/mysql/scripts/mysql_install_db --user=root#配置mysql启动文件cp /usr/local/mysql/support-files/my-default.cnf /etc/my.cnf#
-
leetcode 104. Maximum Depth of Binary TreeGiven a binary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. public class Solution { public int maxDepth(TreeNode root) { int depth = 0; if(root != null){ int leftDepth = maxDepth(root.left); int rightDepth = maxDepth(root.right); depth ++; if(leftDepth < rightDepth){ depth = depth + rightDepth; }else{ depth = depth + leftDepth; } } return depth; } }
-
【LEETCODE】模拟面试-108-Convert Sorted Array to Binary Search Tree图源:新生大学题目:https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/Given an array where elements are sorted in ascending order, convert it to a height balanced BST.分析:Input: So we're given a sorted array in ascending order.**Output: ** To return the root of a Binary Search Tree.The corner case is when the input array is null or empty, then we will return null.To build a tree, we need to firstly find the root.And since it's a BST, wh
binary相关课程
-
算法与数据结构(C++版) 面试/评级前的算法复习技能包 任何时候学习算法都不晚,而且越早越好,这么多年,你听说过技术过时,什么时候听说过算法过时,不仅没有过时,因为机器学习、大数据的要求,算法变得越来越重要了
讲师:liuyubobobo 中级 10486人正在学习
binary相关教程
- 1.3 os.write(fd, binary) os.write(fd, binary) 的功能是写文件:参数 fd, 使用 open 打开的文件描述参数 binary,将 binary 写入到文件中返回值,返回实际写入的字节个数
- 4. 迭代 map 在 Kotlin 使用 for...in 循环的最常见的场景迭代集合, 可以使用 for-in 来迭代 map。val binaryReps = mutableMapOf<Char, String>()for(char in 'A'..'F') { val binary = Integer.toBinaryString(char.toInt()) binaryReps[char] = binary }for((letter, binary) in binaryReps) { //for-in 遍历map println("$letter = $binary")}
- 1.2 os.read(fd, count) os.read(fd, count) 的功能是读取文件:参数 fd,使用 open 打开的文件描述参数 count,至多读取 count 个字节返回值返回读取的 binary,binary 中至多包含 count 个字节如果文件已达到结尾, 返回一个空 binary
- 5.2 @Retention 元注解 介绍Retention 对应的英文意思是保留期,当它应用于一个注解上表示该注解保留存活时间,不管是Java还是Kotlin 一般都有三种时期: 源代码时期(SOURCE)、编译时期(BINARY)、运行时期(RUNTIME)。源码定义@Target(AnnotationTarget.ANNOTATION_CLASS)//目标对象是注解类public annotation class Retention(val value: AnnotationRetention = AnnotationRetention.RUNTIME)//接收一个参数,该参数有个默认值,默认是保留在运行时期@Retention 元注解的取值@Retention 元注解取值主要来源于 AnnotationRetention 枚举类public enum class AnnotationRetention { SOURCE,//源代码时期(SOURCE): 注解不会存储在输出class字节码中 BINARY,//编译时期(BINARY): 注解会存储出class字节码中,但是对反射不可见 RUNTIME//运行时期(RUNTIME): 注解会存储出class字节码中,也会对反射可见, 默认是RUNTIME}
- 1.5 例子:复制文件 使用以上的函数编写一个复制文件的程序 copy.py:import osdef copy(sourcePath, targetPath): sourceFd = os.open(sourcePath, os.O_RDONLY) targetFd = os.open(targetPath, os.O_WRONLY | os.O_CREAT) while (True): binary = os.read(sourceFd, 512) if len(binary) == 0: return os.write(targetFd, binary)copy('test.txt', 'text.bak') 在第 1 行,引入 os 模块在第 3 行,编写函数 copysourcePath 是源文件路径,targetPath 是目标文件路径在第 4 行,打开源文件os.O_RDONLY 表示以只读方式打开在第 5 行,打开目标文件os.O_WRONLY 表示以只写方式打开os.O_CREAT 表示创建一个新文件在第 9 行,如果读取的 binary 的长度为 0,则表示读取到文件末尾在第 13 行,将文件 test.txt 复制到文件 test.bak运行程序,输出如下:C:\> python copy.pyC:\> dir2001/10/01 10:40 <DIR> .2001/10/01 10:40 <DIR> ..2001/10/01 10:40 333 copy.py2001/10/01 09:48 19 test.txt2001/10/01 10:40 19 text.bak在第 1 行,运行程序 copy.py在第 2 行,使用 dir 命令显示当前目录结果表明,在当前目录下新生成一个文件 test.bak
- 6. 完整代码案例代码 import tensorflow as tfimport osimport matplotlib.pyplot as pltdataset_url = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'path_download = os.path.dirname(tf.keras.utils.get_file('cats_and_dogs.zip', origin=dataset_url, extract=True))train_dataset_dir = path_download + '/cats_and_dogs_filtered/train'valid_dataset_dir = path_download + '/cats_and_dogs_filtered/validation'cat_train_dir = path_download + '/cats_and_dogs_filtered/train/cats'cat_validation_dir = path_download + '/cats_and_dogs_filtered/validation/cats'dog_train_dir = path_download + '/cats_and_dogs_filtered/train/dogss'dog_validation_dir = path_download + '/cats_and_dogs_filtered/validation/dogs'BATCH_SIZE = 64TRAIN_NUM = 2000VALID_NUM = 1000EPOCHS = 15Height = 128Width = 128train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)valid_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)train_data_generator = train_image_generator.flow_from_directory(batch_size=BATCH_SIZE, directory=train_dataset_dir, shuffle=True, target_size=(Height, Width), class_mode='binary')valid_data_generator = valid_image_generator.flow_from_directory(batch_size=BATCH_SIZE, directory=valid_dataset_dir, shuffle=True, target_size=(Height, Width), class_mode='binary')model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(Height, Width ,3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1)])model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy'])model.summary()history = model.fit_generator( train_data_generator, steps_per_epoch=TRAIN_NUM // BATCH_SIZE, epochs=EPOCHS, validation_data=valid_data_generator, validation_steps=VALID_NUM // BATCH_SIZE)acc = history.history['accuracy']loss=history.history['loss']val_acc = history.history['val_accuracy']val_loss=history.history['val_loss']epochs_ran = range(EPOCHS)plt.plot(epochs_ran, acc, label='Train Acc')plt.plot(epochs_ran, val_acc, label='Valid Acc')plt.show()plt.plot(epochs_ran, loss, label='Train Loss')plt.plot(epochs_ran, val_loss, label='Valid Loss')plt.show()
binary相关搜索
-
back
backbone
background
background attachment
background color
background image
background position
background repeat
backgroundcolor
backgroundimage
background属性
badge
bash
basics
basis
bat
bdo
bean
before
begintransaction