mysql覆盖索引相关知识
-
MySQL随笔05_索引(下)一、覆盖索引 非主键索引查询,若结果所需要的字段只在主键索引上有,则需要回到主键搜索树,此过程称为 回表 。 非主键索引查询,若结果所需要的字段在当前索引树上已经存在,可直接提供查询结果,不需要回表。即在查询中,非主键索引已经“覆盖了”查询需求,称为 覆盖索引。 如下图,T表,ID为主键,k为普通索引,有如下两个查询语句: select * from T where k=3; -- 需要回表 select ID from T where k=3; -- 不需要回表 由于覆盖索引可以减少树的搜索次数,显著提
-
聊一聊 InnoDB 引擎中的这些索引策略在上一篇中,我们简单的介绍了一下 InnoDB 引擎的索引类型,这一篇我们继续学习 InnoDB 的索引,聊一聊索引策略,更好的利用好索引,提升数据库的性能,主要聊一聊覆盖索引、最左前缀原则、索引下推。 覆盖索引 覆盖索引是指在普通索引树中可以得到查询的结果,不需要在回到主键索引树中再次搜索。 建立如下这张表来演示覆盖索引: mysql> create table T ( ID int primary key, age int NOT NULL DEFAULT 0, name varchar(16) NOT NULL DEFAULT '', index age(ag
-
mysql的索引类型,不看不知道!关于mysql中的索引类型,除了常见的普通索引,唯一索引,组合索引,今天再给大家总结分享一些mysql中的索引类型:聚簇索引 (Clustered Index)非聚簇索引主键索引(PRIMARY KEY)辅助索引(Secondary Indexes)HASH索引BTREE索引T-TREE索引R-Tree索引自适应hash索引(Adaptive Hash Index)唯一索引 (UNIQUE Indexs)普通索引 (Normal index)全文索引 (FULLTEXT Indexes)空间索引 (Spatial indexes)组合索引 (Multiple-Column Indexes)覆盖索引倒序索引 (Descending Indexes)不可见索引(Invisible Indexes) 以上是比较全面的介绍了mysql中索引类型。如果你还知道什么其他类型的索引可以关注慕课网~
-
Mysql优化之索引前言 这几天抽了个时间将《高性能Mysql》看了一下忽觉索引非常之重要,习之然后总结巩固知识。本文索引使用的是InnoDB存储引擎。因为本文并不是说用索引的好处,所以并不会书写QPS之类的测试结果请大家见谅。我的mysql版本是8.0.11。索引使用优化 我们有时候虽然创建了合适的索引但是使用不当依然会使索引失效,所以我将书上的索引使用大致总结了一下。在这之前我先介绍一下EXPLAIN生成结果中字段type和Extra的意义,先说一下type常出现的结果。 (1)const 表中最多只有一行用于主键和唯一索引的匹配 (2)all全表扫描 (3)ref使用索引并符合最左匹配 (4)index : a.当查询是索引覆盖的,即所有数据均可从索引树获取的时候(Extra中有Using Index); b.以索引顺序从索引中查找数据行的全表扫描(无 Using Index); c.如果Extra中Using Index与Using Where同时出现的话,则是利用索引查找键值
mysql覆盖索引相关课程
mysql覆盖索引相关教程
- 4. 覆盖索引 如果一个索引包含所有需要查询的字段,称之为覆盖索引。由于覆盖索引无须回表,通过扫描索引即可拿到所有的值,它能极大地提高查询效率:索引条目一般比数据行小的多,只通过扫描索引即可满足查询需求,MySQL 可以极大地减少数据的访问量。表 customer 有一个多列索引 (first_name,last_name),以下查询只需要访问 first_name 和last_name,这时就可以通过这个索引来实现覆盖索引。mysql> explain select last_name, first_name from customer\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: customer partitions: NULL type: indexpossible_keys: NULL key: idx1_customer key_len: 186 ref: NULL rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)当查询为覆盖索引查询时,在 explain 的 extra 列可以看到 Using index。
- 2. 索引优点 索引最大的作用是快速查找数据,除此之外,索引还有其他的附加作用。B-Tree 是最常见的索引,按照顺序存储数据,它可以用来做 order by 和 group by 操作。因为 B-Tree 是有序的,将相关的值都存储在一起。因为索引存储了实际的列值,某些查询仅通过索引就可以完成查询,如覆盖查询。总的来说,索引三个优点如下:索引可以大大减少 MySQL 需要扫描的数据量;索引可以帮助 MySQL 避免排序和临时表;索引可以将随机 IO 变为顺序 IO。但是,索引是最好的解决方案吗?任何事物都是有两面性的,索引同样如此。索引并不总是最好的优化工具对于非常小的表,大多数情况,全表扫描会更高效;对于中大型表,索引就非常有效;对于特大型表,建索引和用索引的代价是日益增长,这时候可能需要和其他技术结合起来,如分区表。总的来说,只有当使用索引利大于弊时,索引才是最好的优化工具。
- 2. 前缀索引 有时候需要对很长的字符列创建索引,这会使得索引变得很占空间,效率也很低下。碰到这种情况,一般可以索引开始的部分字符,这样可以节省索引产生的空间,但同时也会降低索引的选择性。那我们就要选择足够长的前缀来保证较高的选择性,但是为了节省空间,前缀又不能太长,只要前缀的基数,接近于完整列的基数即可。Tips:索引的选择性指,不重复的索引值(也叫基数,cardinality)和数据表的记录总数的比值,索引的选择性越高表示查询效率越高。完整列的选择性:mysql> select count(distinct last_name)/count(*) from customer;+------------------------------------+| count(distinct last_name)/count(*) |+------------------------------------+| 0.053 |+------------------------------------+不同前缀长度的选择性:mysql> select count(distinct left(last_name,3))/count(*) left_3, count(distinct left(last_name,4))/count(*) left_4, count(distinct left(last_name,5))/count(*) left_5, count(distinct left(last_name,6))/count(*) left_6 from customer;+--------+--------+--------+--------+| left_3 | left_4 | left_5 | left_6 |+--------+--------+--------+--------+| 0.043| 0.046| 0.050| 0.051|+--------+--------+--------+--------+从上面的查询可以看出,当前缀长度为 6 时,前缀的选择性接近于完整列的选择性 0.053,再增加前缀长度,能够提升选择性的幅度也很小了。创建前缀长度为6的索引:mysql> alter table customer add index idx_last_name(last_name(6));前缀索引可以使索引更小更快,但同时也有缺点:无法使用前缀索引做 order by 和 group by,也无法使用前缀索引做覆盖扫描。
- MySQL 索引详细解读 索引是数据库中用来提高性能的常用工具。本节主要介绍 MySQL 索引的概念,及其优点。
- 4. 查看代码覆盖结果 在程序结束运行后, 就会在 Project 与 Coverage 工具窗口显示语句覆盖结果在编辑器中打开其中的文件,可以看到侧边框用绿色显示了覆盖的行,红色显示了未覆盖的行。除此以外,可以查看历史的覆盖率结果。 主菜单 Run -> Show Coverage Data
- 1.索引概念 索引在 MySQL 中也叫“键(Key)”,是存储引擎用于快速查找记录的一种数据结构,这也是索引的基本功能。MySQL 索引的工作原理,类似一本书的目录,如果要在一本书中找到特定的知识点,先通过目录找到对应的页码。在 MySQL 中,存储引擎用类似的方法使用索引,先在索引找到对应值,再根据索引记录找到对应的数据行。简单总结,索引就是为了提高数据查询的效率,跟一本书的目录一样。以下查询假设字段 c2 上建有索引,则存储引擎将通过索引找到 c2 等于 测试01 的行。也就是说,存储引擎先在索引按值进行查找,再返回所有包含该值的数据行。mysql> select * from t1 where c2='测试01'\G*************************** 1. row ***************************c1: 1c2: 测试011 row in set (0.00 sec)从执行计划的角度,也可以看出索引 idx_c2 被使用:mysql> create table t1( -> c1 int not null auto_increment, -> c2 varchar(10) default null, -> primary key(c1) -> ) engine = innodb;Query OK, 0 rows affected (0.05 sec)mysql> insert into t1() values(1,'测试01');Query OK, 1 row affected (0.00 sec)mysql> create index idx_c2 on t1(c2);Query OK, 0 rows affected (0.02 sec)Records: 0 Duplicates: 0 Warnings: 0mysql> explain select * from t1 where c2='测试01'\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: t1 partitions: NULL type: refpossible_keys: idx_c2 key: idx_c2 key_len: 33 ref: const rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)常见的索引类型主要有 B-Tree 索引、哈希索引、空间数据索引(R-Tree)、全文索引,在后续小节将详细介绍。InnoDB 和 MyISAM 存储引擎可以创建 B-Tree 索引,单列或多列都可以创建索引;Memory 存储引擎可以创建哈希索引,同时也支持 B-Tree 索引;从 MySQL5.7 开始,InnoDB 和 MyISAM 存储引擎都可以支持空间类型索引;InnoDB 和 MyISAM 存储可以支持全文索引(FULLTEXT),该索引可以用于全文搜索,仅限于CHAR、VARCHAR、TEXT 列。
mysql覆盖索引相关搜索
-
mac osx
machine_start
macox
magellan
malloc
manifest
manifest文件
map
map 遍历
mapreduce编程
maps google com
margin
margin bottom
margin left
margin right
margin top
marginbottom
marginheight
marginleft
margintop