mysql更新索引相关知识
-
MySQL索引之主键索引在MySQL里,主键索引和辅助索引分别是什么意思,有什么区别?上次的分享我们介绍了聚集索引和非聚集索引的区别,本次我们继续介绍主键索引和辅助索引的区别。1、主键索引主键索引,简称主键,原文是PRIMARY KEY,由一个或多个列组成,用于唯一性标识数据表中的某一条记录。一个表可以没有主键,但最多只能有一个主键,并且主键值不能包含NULL。在MySQL中,InnoDB数据表的主键设计我们通常遵循几个原则:1、采用一个没有业务用途的自增属性列作为主键;2、主键字段值总是不更新,只有新增或者删除两种操作;3、不选择会动态更新的类型,比如当前时间戳等。这么做的好处有几点:1、新增数据时,由于主键值是顺序增长的,innodb page发生分裂的概率降低了;可以参考以往的分享“[MySQL FAQ]系列 — 为什么InnoDB表要建议用自增列做主键”;2、业务数据有变更时,不修改主键值,物理存储位置发生变化的概率降低了,innodb page中产生碎片的概率也降低了。MyISAM表因为是堆组织表,主键类型设计方面就可以
-
MySQL索引之聚集索引介绍在MySQL里,聚集索引和非聚集索引分别是什么意思,有什么区别?在MySQL中,InnoDB引擎表是(聚集)索引组织表(clustered index organize table),而MyISAM引擎表则是堆组织表(heap organize table)。也有人把聚集索引称为聚簇索引。当然了,聚集索引的概念不是MySQL里特有的,其他数据库系统也同样有。简言之,聚集索引是一种索引组织形式,索引的键值逻辑顺序决定了表数据行的物理存储顺序,而非聚集索引则就是普通索引了,仅仅只是对数据列创建相应的索引,不影响整个表的物理存储顺序。我们先来看看两种存储形式的不同之处:简单说,IOT表里数据物理存储顺序和主键索引的顺序一致,所以如果新增数据是离散的,会导致数据块趋于离散,而不是趋于顺序。而HOT表数据写入的顺序是按写入时间顺序存储的。IOT表相比HOT表的优势是:范围查询效率更高;数据频繁更新(聚集索引本身不更新)时,更不容易产生碎片;特别适合有一小部分热点数据频繁读写的场景;通过主键访问数据时快速可达;IOT表
-
Mysql索引总结定义:索引(Index)是帮助MySQL高效获取数据的数据结构。可以索引的本质:索引是数据结构。可以理解为”排好序的快速超找数据结构”,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。优势:类似大学图书馆建书目索引,提高数据检索效率,降低数据库的IO成本。通过索引对数据进行排序,降低数据排序的成本,降低CPU的消耗。劣势:实际上索引也是一张表,该表保存了主键与索引字段。并指向实体表的记录,所以索引列也是要占空间的。虽然索引大大提高了查询速度,同时确会降低更新表的速度,如对表进行INSERT、UPDATE、DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段。都会调整因为更新所带来的键值变化后的索引信息。 索引的分类单值索引:即一个索引只包含单个列,一个表可以有多个单列索引。唯一索引:索引列的值必须唯一,但允许有空值。复合索引:即一个索引
-
mysql 添加索引 mysql 如何创建索引1.添加PRIMARY KEY(主键索引) mysql>ALTER TABLE `table_name` ADD PRIMARY KEY ( `column` ) 2.添加UNIQUE(唯一索引) mysql>ALTER TABLE `table_name` ADD UNIQUE ( `column` ) 3.添加INDEX(普通索引) mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column` ) 4.添加FULLTEXT(全文索引) mysql>ALTER TABLE `table_name` ADD FULLTEXT ( `column`) 5.添加多列索引 mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column1`, `column2`, `column3` )下面是更加详细的方法MySQL中可以使用alter table这个SQL语句来
mysql更新索引相关课程
-
MySQL提升课程 全面讲解MySQL架构设计 如何获得MySQL最优性能?如何建立MySQL高可用集群?如何搭建稳定高效的MySQL环境?国内顶级电商公司数据库专家带你成为一名优秀的DBA。
讲师:sqlercn 中级 4050人正在学习
mysql更新索引相关教程
- MySQL 索引详细解读 索引是数据库中用来提高性能的常用工具。本节主要介绍 MySQL 索引的概念,及其优点。
- 1.索引概念 索引在 MySQL 中也叫“键(Key)”,是存储引擎用于快速查找记录的一种数据结构,这也是索引的基本功能。MySQL 索引的工作原理,类似一本书的目录,如果要在一本书中找到特定的知识点,先通过目录找到对应的页码。在 MySQL 中,存储引擎用类似的方法使用索引,先在索引找到对应值,再根据索引记录找到对应的数据行。简单总结,索引就是为了提高数据查询的效率,跟一本书的目录一样。以下查询假设字段 c2 上建有索引,则存储引擎将通过索引找到 c2 等于 测试01 的行。也就是说,存储引擎先在索引按值进行查找,再返回所有包含该值的数据行。mysql> select * from t1 where c2='测试01'\G*************************** 1. row ***************************c1: 1c2: 测试011 row in set (0.00 sec)从执行计划的角度,也可以看出索引 idx_c2 被使用:mysql> create table t1( -> c1 int not null auto_increment, -> c2 varchar(10) default null, -> primary key(c1) -> ) engine = innodb;Query OK, 0 rows affected (0.05 sec)mysql> insert into t1() values(1,'测试01');Query OK, 1 row affected (0.00 sec)mysql> create index idx_c2 on t1(c2);Query OK, 0 rows affected (0.02 sec)Records: 0 Duplicates: 0 Warnings: 0mysql> explain select * from t1 where c2='测试01'\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: t1 partitions: NULL type: refpossible_keys: idx_c2 key: idx_c2 key_len: 33 ref: const rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)常见的索引类型主要有 B-Tree 索引、哈希索引、空间数据索引(R-Tree)、全文索引,在后续小节将详细介绍。InnoDB 和 MyISAM 存储引擎可以创建 B-Tree 索引,单列或多列都可以创建索引;Memory 存储引擎可以创建哈希索引,同时也支持 B-Tree 索引;从 MySQL5.7 开始,InnoDB 和 MyISAM 存储引擎都可以支持空间类型索引;InnoDB 和 MyISAM 存储可以支持全文索引(FULLTEXT),该索引可以用于全文搜索,仅限于CHAR、VARCHAR、TEXT 列。
- 2. 前缀索引 有时候需要对很长的字符列创建索引,这会使得索引变得很占空间,效率也很低下。碰到这种情况,一般可以索引开始的部分字符,这样可以节省索引产生的空间,但同时也会降低索引的选择性。那我们就要选择足够长的前缀来保证较高的选择性,但是为了节省空间,前缀又不能太长,只要前缀的基数,接近于完整列的基数即可。Tips:索引的选择性指,不重复的索引值(也叫基数,cardinality)和数据表的记录总数的比值,索引的选择性越高表示查询效率越高。完整列的选择性:mysql> select count(distinct last_name)/count(*) from customer;+------------------------------------+| count(distinct last_name)/count(*) |+------------------------------------+| 0.053 |+------------------------------------+不同前缀长度的选择性:mysql> select count(distinct left(last_name,3))/count(*) left_3, count(distinct left(last_name,4))/count(*) left_4, count(distinct left(last_name,5))/count(*) left_5, count(distinct left(last_name,6))/count(*) left_6 from customer;+--------+--------+--------+--------+| left_3 | left_4 | left_5 | left_6 |+--------+--------+--------+--------+| 0.043| 0.046| 0.050| 0.051|+--------+--------+--------+--------+从上面的查询可以看出,当前缀长度为 6 时,前缀的选择性接近于完整列的选择性 0.053,再增加前缀长度,能够提升选择性的幅度也很小了。创建前缀长度为6的索引:mysql> alter table customer add index idx_last_name(last_name(6));前缀索引可以使索引更小更快,但同时也有缺点:无法使用前缀索引做 order by 和 group by,也无法使用前缀索引做覆盖扫描。
- 2. 索引优点 索引最大的作用是快速查找数据,除此之外,索引还有其他的附加作用。B-Tree 是最常见的索引,按照顺序存储数据,它可以用来做 order by 和 group by 操作。因为 B-Tree 是有序的,将相关的值都存储在一起。因为索引存储了实际的列值,某些查询仅通过索引就可以完成查询,如覆盖查询。总的来说,索引三个优点如下:索引可以大大减少 MySQL 需要扫描的数据量;索引可以帮助 MySQL 避免排序和临时表;索引可以将随机 IO 变为顺序 IO。但是,索引是最好的解决方案吗?任何事物都是有两面性的,索引同样如此。索引并不总是最好的优化工具对于非常小的表,大多数情况,全表扫描会更高效;对于中大型表,索引就非常有效;对于特大型表,建索引和用索引的代价是日益增长,这时候可能需要和其他技术结合起来,如分区表。总的来说,只有当使用索引利大于弊时,索引才是最好的优化工具。
- 4. 覆盖索引 如果一个索引包含所有需要查询的字段,称之为覆盖索引。由于覆盖索引无须回表,通过扫描索引即可拿到所有的值,它能极大地提高查询效率:索引条目一般比数据行小的多,只通过扫描索引即可满足查询需求,MySQL 可以极大地减少数据的访问量。表 customer 有一个多列索引 (first_name,last_name),以下查询只需要访问 first_name 和last_name,这时就可以通过这个索引来实现覆盖索引。mysql> explain select last_name, first_name from customer\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: customer partitions: NULL type: indexpossible_keys: NULL key: idx1_customer key_len: 186 ref: NULL rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)当查询为覆盖索引查询时,在 explain 的 extra 列可以看到 Using index。
- 1. B-Tree 索引 B-Tree 索引是最常见的索引之一,当大家在谈论索引的时候,如果没有特别说明,那多半说的就是 B-Tree 索引。在 MySQL 中,大多数的存储引擎都支持 B-Tree 索引。
mysql更新索引相关搜索
-
mac osx
machine_start
macox
magellan
malloc
manifest
manifest文件
map
map 遍历
mapreduce编程
maps google com
margin
margin bottom
margin left
margin right
margin top
marginbottom
marginheight
marginleft
margintop