mysql视图索引相关知识
-
Oracle 函数、视图、索引、同义词目录 Oracle函数 字符串函数 数字函数 日期函数 转换函数 其他函数(通用函数) Oracle索引 索引的作用和特点 按使用方式区分 按索引类型区分 索引的创建修改删除 Oracle视图 视图的作用和特点 视图的分类 视图的创建和修改删除 Oracle同义词 同义词的作用 同义词的创建和修改 一、系统函数 聚合函数 max() min() count() sum() avg() 但是函数具有什么作用? 答: 在 Oracle中,函数分为系统函数 和 自定义函数。通过函数,我们能够封装一些方法,而达到简化程序
-
MySQL聚簇索引MySQL作为迭代了很多个版本的数据库。在数据库的索引上实现了很多的优化版本,从一开始的只允许一个表有一个列为索引值,到目前版本可支持多个列建立索引值,更多关于索引优化版本的描述,以后有机会笔者再写一篇文章。本文主要介绍索引当中的聚簇索引。MySQL官方对聚簇索引的定义是,聚簇索引并不是一种单独的索引类,而是一种数据存储方式,第一次看到这段描述,我相信很多人都会一头雾水,索引是一种数据存储结构?这怎么解释?下面笔者一步一步来讲述MySQL对聚簇索引的定义和具体运用。首先上贴一张图在MySQL中,有一列值,专门被设定为聚簇索引,这列值就是主键,通常为数字类型的字段。那么如果数据表中没有主键呢?MySQL的解决办法是隐式地将一个唯一的非空的列定义为聚簇。那如果这也没有呢?MySQL就自己创建一个聚簇索引,具体这个聚簇索引内部是怎么建立的,笔者还需要去学习学习。反正无论如何,MySQL都会创建一个聚簇索引。那么为什么说聚簇索引是一种数据存储结构呢?原因是MySQL将索引(即主键)对应的每一条记录都以链表的形式存储
-
mysql 添加索引 mysql 如何创建索引1.添加PRIMARY KEY(主键索引) mysql>ALTER TABLE `table_name` ADD PRIMARY KEY ( `column` ) 2.添加UNIQUE(唯一索引) mysql>ALTER TABLE `table_name` ADD UNIQUE ( `column` ) 3.添加INDEX(普通索引) mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column` ) 4.添加FULLTEXT(全文索引) mysql>ALTER TABLE `table_name` ADD FULLTEXT ( `column`) 5.添加多列索引 mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column1`, `column2`, `column3` )下面是更加详细的方法MySQL中可以使用alter table这个SQL语句来
-
MySQL聚簇索引和非聚簇索引的理解关于聚簇索引和非聚簇索引的概念很多同学找了很多教程但是仍然很迷糊。这里给出一篇翻译,并给出我的配图,希望对大家理解有帮助。英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/一、聚簇索引的概念一般来说索引就是如B-树这类可以来存储键值方便快速查找的数据结构。聚簇索引是物理索引,数据表就是按顺序存储的,物理上是连续的。一旦创建了聚簇索引,表中的所有列都根据聚簇索引的key来存储。因为聚簇索引是按该列的排序存储的,因此一个表只能有一个聚簇索引。二、MySQL中InnoDB表的聚簇索引每个InnoDB表都需要一个聚簇索引。该聚簇索引可以帮助表优化增删改查操作。如果你为表定义了一个主键,MySQL将使用主键作为聚簇索引。如果你不为表指定一个主键,MySQL讲索第一个组成列都not null的唯一索引作为聚簇索引。如果InnoBD表没有主键且没有适合的唯一索引(没有构成该唯一索引的所有列都NOT NULL),MySQL将自动创建一个隐
mysql视图索引相关课程
-
MySQL提升课程 全面讲解MySQL架构设计 如何获得MySQL最优性能?如何建立MySQL高可用集群?如何搭建稳定高效的MySQL环境?国内顶级电商公司数据库专家带你成为一名优秀的DBA。
讲师:sqlercn 中级 4050人正在学习
mysql视图索引相关教程
- MySQL 索引详细解读 索引是数据库中用来提高性能的常用工具。本节主要介绍 MySQL 索引的概念,及其优点。
- 1.索引概念 索引在 MySQL 中也叫“键(Key)”,是存储引擎用于快速查找记录的一种数据结构,这也是索引的基本功能。MySQL 索引的工作原理,类似一本书的目录,如果要在一本书中找到特定的知识点,先通过目录找到对应的页码。在 MySQL 中,存储引擎用类似的方法使用索引,先在索引找到对应值,再根据索引记录找到对应的数据行。简单总结,索引就是为了提高数据查询的效率,跟一本书的目录一样。以下查询假设字段 c2 上建有索引,则存储引擎将通过索引找到 c2 等于 测试01 的行。也就是说,存储引擎先在索引按值进行查找,再返回所有包含该值的数据行。mysql> select * from t1 where c2='测试01'\G*************************** 1. row ***************************c1: 1c2: 测试011 row in set (0.00 sec)从执行计划的角度,也可以看出索引 idx_c2 被使用:mysql> create table t1( -> c1 int not null auto_increment, -> c2 varchar(10) default null, -> primary key(c1) -> ) engine = innodb;Query OK, 0 rows affected (0.05 sec)mysql> insert into t1() values(1,'测试01');Query OK, 1 row affected (0.00 sec)mysql> create index idx_c2 on t1(c2);Query OK, 0 rows affected (0.02 sec)Records: 0 Duplicates: 0 Warnings: 0mysql> explain select * from t1 where c2='测试01'\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: t1 partitions: NULL type: refpossible_keys: idx_c2 key: idx_c2 key_len: 33 ref: const rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)常见的索引类型主要有 B-Tree 索引、哈希索引、空间数据索引(R-Tree)、全文索引,在后续小节将详细介绍。InnoDB 和 MyISAM 存储引擎可以创建 B-Tree 索引,单列或多列都可以创建索引;Memory 存储引擎可以创建哈希索引,同时也支持 B-Tree 索引;从 MySQL5.7 开始,InnoDB 和 MyISAM 存储引擎都可以支持空间类型索引;InnoDB 和 MyISAM 存储可以支持全文索引(FULLTEXT),该索引可以用于全文搜索,仅限于CHAR、VARCHAR、TEXT 列。
- 4. 覆盖索引 如果一个索引包含所有需要查询的字段,称之为覆盖索引。由于覆盖索引无须回表,通过扫描索引即可拿到所有的值,它能极大地提高查询效率:索引条目一般比数据行小的多,只通过扫描索引即可满足查询需求,MySQL 可以极大地减少数据的访问量。表 customer 有一个多列索引 (first_name,last_name),以下查询只需要访问 first_name 和last_name,这时就可以通过这个索引来实现覆盖索引。mysql> explain select last_name, first_name from customer\G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: customer partitions: NULL type: indexpossible_keys: NULL key: idx1_customer key_len: 186 ref: NULL rows: 1 filtered: 100.00 Extra: Using index1 row in set, 1 warning (0.00 sec)当查询为覆盖索引查询时,在 explain 的 extra 列可以看到 Using index。
- 1. B-Tree 索引 B-Tree 索引是最常见的索引之一,当大家在谈论索引的时候,如果没有特别说明,那多半说的就是 B-Tree 索引。在 MySQL 中,大多数的存储引擎都支持 B-Tree 索引。
- 2. 前缀索引 有时候需要对很长的字符列创建索引,这会使得索引变得很占空间,效率也很低下。碰到这种情况,一般可以索引开始的部分字符,这样可以节省索引产生的空间,但同时也会降低索引的选择性。那我们就要选择足够长的前缀来保证较高的选择性,但是为了节省空间,前缀又不能太长,只要前缀的基数,接近于完整列的基数即可。Tips:索引的选择性指,不重复的索引值(也叫基数,cardinality)和数据表的记录总数的比值,索引的选择性越高表示查询效率越高。完整列的选择性:mysql> select count(distinct last_name)/count(*) from customer;+------------------------------------+| count(distinct last_name)/count(*) |+------------------------------------+| 0.053 |+------------------------------------+不同前缀长度的选择性:mysql> select count(distinct left(last_name,3))/count(*) left_3, count(distinct left(last_name,4))/count(*) left_4, count(distinct left(last_name,5))/count(*) left_5, count(distinct left(last_name,6))/count(*) left_6 from customer;+--------+--------+--------+--------+| left_3 | left_4 | left_5 | left_6 |+--------+--------+--------+--------+| 0.043| 0.046| 0.050| 0.051|+--------+--------+--------+--------+从上面的查询可以看出,当前缀长度为 6 时,前缀的选择性接近于完整列的选择性 0.053,再增加前缀长度,能够提升选择性的幅度也很小了。创建前缀长度为6的索引:mysql> alter table customer add index idx_last_name(last_name(6));前缀索引可以使索引更小更快,但同时也有缺点:无法使用前缀索引做 order by 和 group by,也无法使用前缀索引做覆盖扫描。
- 2. 索引优点 索引最大的作用是快速查找数据,除此之外,索引还有其他的附加作用。B-Tree 是最常见的索引,按照顺序存储数据,它可以用来做 order by 和 group by 操作。因为 B-Tree 是有序的,将相关的值都存储在一起。因为索引存储了实际的列值,某些查询仅通过索引就可以完成查询,如覆盖查询。总的来说,索引三个优点如下:索引可以大大减少 MySQL 需要扫描的数据量;索引可以帮助 MySQL 避免排序和临时表;索引可以将随机 IO 变为顺序 IO。但是,索引是最好的解决方案吗?任何事物都是有两面性的,索引同样如此。索引并不总是最好的优化工具对于非常小的表,大多数情况,全表扫描会更高效;对于中大型表,索引就非常有效;对于特大型表,建索引和用索引的代价是日益增长,这时候可能需要和其他技术结合起来,如分区表。总的来说,只有当使用索引利大于弊时,索引才是最好的优化工具。
mysql视图索引相关搜索
-
mac osx
machine_start
macox
magellan
malloc
manifest
manifest文件
map
map 遍历
mapreduce编程
maps google com
margin
margin bottom
margin left
margin right
margin top
marginbottom
marginheight
marginleft
margintop