python字典变矩阵
很多同学在进行编程学习时缺乏系统学习的资料。本页面基于python字典变矩阵内容,从基础理论到综合实战,通过实用的知识类文章,标准的编程教程,丰富的视频课程,为您在python字典变矩阵相关知识领域提供全面立体的资料补充。同时还包含 package、package文件、padding 的知识内容,欢迎查阅!
python字典变矩阵相关知识
-
Python矩阵和Numpy数组的那些事儿大家好,我是IT共享者,人称皮皮。今天给大家介绍矩阵和NumPy数组。 一、什么是矩阵? 使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。 二、Python矩阵 1. 列表视为矩阵 Python没有矩阵的内置类型。但是,可以将列表的列表视为矩阵。 例: A = [[1, 4, 5], [-5, 8, 9]] 可以将此列表的列表视为具有2行3列的矩阵。 如图: 2. 如何使用嵌套列表。 A = [[1, 4, 5, 12], [-5, 8, 9, 0], [-6, 7, 11, 19]] print("A =", A)
-
Python实现矩阵计算矩阵其实就是二维数组 这里用Python模拟一下矩阵运算的加法和乘法(Python3实现) import copy from functools import reduce class Matrix(object): def __init__(self, dyadic_array): self.matrix = dyadic_array def __str__(self): s = '' for arr1 in self.matrix: l = len(arr1) for ind
-
Flutter 45: 图解矩阵变换 Transform 类 (二)小菜刚学习了 Transform 类,其核心部分在于矩阵变换,而矩阵变换是由 Matrix4 处理的,且无论是如何的平移旋转等操作,根本上还是一个四阶矩阵操作的;接下来小菜学习一下 Matrix4 的基本用法; 基本构造 Matrix4(double arg0, ... double arg15) Matrix4 默认构造函数由 16 个参数,从左到右从上到下依此排列为一个四阶矩阵; transform: Matrix4(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0), Matrix4.i
-
Flutter 44: 图解矩阵变换 Transform 类 (一)小菜在学习矩阵变换时需要用到 Transform 类,可以实现子 Widget 的 scale 缩放 / translate 平移 / rotate 旋转 / skew 斜切 等效果,对应于 Canvas 绘制过程中的矩阵变换等;小菜今对此进行初步整理; scale 缩放 scale 缩放 可以通过 Transform 提供的构造方法或 Matrix4 矩阵变化来实现; Transform.scale 构造方法 Transform.scale({ Key key, @required double scale, // 缩放比例 this.origin, // 缩放原点 this.alignment = Ali
python字典变矩阵相关课程
-
结合编程学数学 专为程序员设计的线性代数 bobo老师专为程序员设计的线性代数课程,全新的课程设计模式,配合编程讲解,拒绝枯燥的例题讲解,而是讲清楚每一个知识点的来龙去脉,完整学习线性代数领域的知识体系,这一次,让你学会线性代数!
讲师:liuyubobobo 初级 3087人正在学习
python字典变矩阵相关教程
- 2.3 逆矩阵 numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。逆矩阵的概念如下:设 A 是数域上的一个 n 阶矩阵,若在相同数域上存在另一个 n 阶矩阵 B,使得: AB=BA=E ,则我们称 B 是 A 的逆矩阵,而A则被称为可逆矩阵。注意:E 为单位矩阵。案例利用逆矩阵,可以换一种思路求解 2.2 中的方程组的解:对于矩阵 A,假设逆矩阵为 F,则有:x=Fb。因此方程组的解为:print("计算A的逆矩阵:")F = np.linalg.inv(A)print("A的逆矩阵F:", F)print("方程组的解为:", np.matmul(F, b))计算过程如下:计算A的逆矩阵:A的逆矩阵F: [[-0.25 0.625 -0.125] [ 0.5 -0.25 0.25 ] [ 0.75 -0.375 -0.125]]方程组的解为: [[1.] [4.] [5.]]
- 2.3 使用张量进行矩阵运算 使用张量进行矩阵运算的条件为:两个张量形状除了最后两个维度外的所有形状必须相同;两个张量形状最后两个维度需要符合 a * b 与 b * c的的格式。在 TensorFlow 之中我们可以通过tf.matmul函数进行运算,具体示例如下:a = tf.random.normal([3,4,5])b = tf.random.normal([3,5,6])print(tf.matmul(a, b))其中a与b是固定形状的随机张量,因为两者第一维形状相同,而最后两维形状符合矩阵相乘的格式,因此可以进行矩阵运算,得到的结果为:tf.Tensor([[[-0.41255787 0.2539668 -0.70357645 0.02980493 0.5546258 0.5286447 ] [ 0.7544514 1.2061275 -0.8299564 -0.61776394 -2.0845695 0.55285174] [ 4.9162273 0.23087293 0.6157658 -0.3430875 -3.9511528 0.2734207 ] [-0.8638447 -0.48060232 -1.4220456 0.35801342 2.505946 2.7356615 ]] [[ 2.260117 2.338372 -3.4372165 -0.2901526 0.12752411 -0.23638 ] [ 0.14264594 -1.9469845 -5.1910253 2.5343626 -4.1282463 1.295904 ] [ 0.5720302 1.6685274 2.1391735 -1.8491768 2.8305507 -1.1663995 ] [-0.8750653 -3.5349839 -2.7755249 2.5702014 -3.525653 0.08906344]] [[ 0.04434888 2.0841029 0.06953187 -2.3450966 -1.5517069 0.83987266] [ 2.0700073 1.5478165 -0.07335746 -0.36860508 0.46835172 1.861287 ] [-3.5253298 -1.5082629 -1.6806324 -1.2718723 -1.378425 -1.1990058 ] [ 0.88312423 1.0631399 2.6772838 -1.0774231 -1.8299285 0.89358884]]], shape=(3, 4, 6), dtype=float32)可以看到,我们的张量已经进行了矩阵的运算,并切形状为我们期待的结果。
- 6. 字典 字典由键和对应值成对组成,字典中所有的键值对放在 {} 中间,每一对键值之间用逗号分开,例如:{‘a’:‘A’, ‘b’: ‘B’, ‘c’:‘C’}字典中包含3个键值对键 ‘a’ 的值是 ‘A’键 ‘b’ 的值是 ‘B’键 ‘c’ 的值是 ‘C’{1:100, 2: 200, 3:300}字典中包含3个键值对键 1 的值是 100键 2 的值是 200键 3 的值是 300字典通常用于描述对象的各种属性,例如一本书,有书名、作者名、出版社等各种属性,可以使用字典描述如下:>>> book = {'title': 'Python 入门基础', 'author': '张三', 'press': '机械工业出版社'}>>> book['title']'Python 入门基础'>>> book['author']'张三'>>> book['press']'机械工业出版社'在第 1 行,创建了一个字典用于描述一本书在第 2 行,使用字符串 ‘title’ 作为键(索引)访问字典中对应的值在第 4 行,使用字符串 ‘author’ 作为键(索引)访问字典中对应的值在第 6 行,使用字符串 ‘press’ 作为键(索引)访问字典中对应的值
- Python 数据类型详细篇:字典 前面的几个小节我们分别学习了字符串、列表、和元组等等几种 Python 中的基础数据类型,这节课我们来学习 Python 中另一个比较重要的数据类型–字典,字典和其他我们已经学习过的数据类型都有些不一样,具体不一样在哪里我们一起来看一下:
- 1. 字典简介 字典由键和对应值成对组成,字典中所有的键值对放在 {} 中间,每一对键值之间用逗号分开,例如:{‘a’:‘A’, ‘b’: ‘B’, ‘c’:‘C’}字典中包含 3 个键值对键 ‘a’ 的值是 ‘A’键 ‘b’ 的值是 ‘B’键 ‘c’ 的值是 ‘C’{1:100, 2: 200, 3:300}字典中包含 3 个键值对键 1 的值是 100 键 2 的值是 200 键 3 的值是 300字典通常用于描述对象的各种属性,例如一本书,有书名、作者名、出版社等各种属性,可以使用字典描述如下:>>> book = {'title': 'Python 入门基础', 'author': '张三', 'press': '机械工业出版社'}>>> book['title']'Python 入门基础'>>> book['author']'张三'>>> book['press']'机械工业出版社'在第 1 行,创建了一个字典用于描述一本书;在第 2 行,使用字符串 ‘title’ 作为键(索引)访问字典中对应的值;在第 4 行,使用字符串 ‘author’ 作为键(索引)访问字典中对应的值;在第 6 行,使用字符串 ‘press’ 作为键(索引)访问字典中对应的值。
- 5. 遍历字典 Python 提供了 for 循环语句用于遍历列表、集合、字典等数据类型,关于 for 循环语句的详细用法,请参考词条 Python 的循环控制语句。
python字典变矩阵相关搜索
-
pack
package
package文件
padding
pages
page对象
panda
panel
panel控件
param
parameter
parcel
parent
parentnode
parents
parse
parse error
parseint
partition
pascal