我正在尝试conv1根据下面的代码和架构可视化层的 cnn 网络特征图。它在没有 DataParallel 的情况下正常工作,但是当我激活model = nn.DataParallel(model)它时,它会引发错误:“DataParallel”对象没有属性“conv1”。任何建议表示赞赏。class Model(nn.Module): def __init__(self, kernel, num_filters, res = ResidualBlock): super(Model, self).__init__() self.conv0 = nn.Sequential( nn.Conv2d(4, num_filters, kernel_size = kernel*3, padding = 4), nn.BatchNorm2d(num_filters), nn.ReLU(inplace=True)) self.conv1 = nn.Sequential( nn.Conv2d(num_filters, num_filters*2, kernel_size = kernel, stride=2, padding = 1), nn.BatchNorm2d(num_filters*2), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential( nn.Conv2d(num_filters*2, num_filters*4, kernel_size = kernel, stride=2, padding = 1), nn.BatchNorm2d(num_filters*4), nn.ReLU(inplace=True)) self.tsconv0 = nn.Sequential( nn.ConvTranspose2d(num_filters*4, num_filters*2, kernel_size = kernel, padding = 1), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.ReLU(inplace=True), nn.BatchNorm2d(num_filters*2)) self.tsconv1 = nn.Sequential( nn.ConvTranspose2d(num_filters*2, num_filters, kernel_size = kernel, padding = 1), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.ReLU(inplace=True), nn.BatchNorm2d(num_filters)) self.tsconv2 = nn.Sequential( nn.Conv2d(num_filters, 1, kernel_size = kernel*3, padding = 4, bias=False), nn.ReLU(inplace=True))model = Model(kernel, num_filters)model = nn.DataParallel(model)
1 回答
料青山看我应如是
TA贡献1772条经验 获得超8个赞
当您使用 时DataParallel
,请在此处添加额外的内容module
。而不是model.conv3.
简单地写model.module.conv3.
添加回答
举报
0/150
提交
取消