1 回答
TA贡献1786条经验 获得超13个赞
df.A.values转换df.A为 numpy 数组。为了回答这个问题,让我们创建一个测试数据框:
>>> from pandas import util
>>> df= util.testing.makeDataFrame()
>>> df.head()
A B C D
BMdjymcTHC -0.684721 1.622097 -2.525634 1.627290
0e7Mekvkf7 0.003399 0.152074 -0.095163 -0.276664
q0E6te3rF9 1.639105 -1.935913 1.733587 -0.729493
w7d1NGfq1p -0.496669 -1.182373 -0.950125 2.201667
RPqDHEGhxs -1.169309 0.608857 -0.748978 0.270510
您的代码给出以下输出:
>>> df.A.values[:, None]
array([[-0.68472066],
[ 0.00339929],
[ 1.63910531],
[-0.49666918],
[-1.16930896],
[ 0.18225299],
[ 0.88957142],
[ 0.97299314],
[ 0.67984743],
[ 1.11192848],
[-1.43273161],
[-0.59633832],
[ 0.81591342],
[ 1.26188783],
[ 0.08789735],
[-0.37412069],
[ 0.15285941],
[-0.14208735],
[ 0.37897237],
[ 0.49208469],
[ 0.86949863],
[-0.98972967],
[ 0.66001405],
[-1.69139314],
[ 1.18512158],
[ 1.47981638],
[ 1.21812138],
[ 0.82375357],
[-0.4896989 ],
[ 0.53701562]])
让我们检查一下shape:
>>> df.A.values[:, None].shape
(30, 1)
如果你没有None:
>>> df.A.values[:]
array([-0.68472066, 0.00339929, 1.63910531, -0.49666918, -1.16930896,
0.18225299, 0.88957142, 0.97299314, 0.67984743, 1.11192848,
-1.43273161, -0.59633832, 0.81591342, 1.26188783, 0.08789735,
-0.37412069, 0.15285941, -0.14208735, 0.37897237, 0.49208469,
0.86949863, -0.98972967, 0.66001405, -1.69139314, 1.18512158,
1.47981638, 1.21812138, 0.82375357, -0.4896989 , 0.53701562])
是shape:
>>> df.A.values[:].shape
(30,)
因此,它本质上是向数组添加一个维度/轴numpy,并在我的例子中创建一个维度数组(30x1)。您的代码相当于:
>>> df.A.values.reshape(-1,1)
>>> df.A.values.reshape(-1,1).shape
(30, 1)
添加回答
举报