2 回答
TA贡献1880条经验 获得超4个赞
这里可以将值转换为 numpy 数组并通过传递给DataFrame构造函数进行展平:
df = pd.DataFrame({'Name': np.ravel(df2.to_numpy()),
'Income': np.ravel(df1.to_numpy())})
print (df)
Name Income
0 abc -13036.0
1 dfd -30360.0
2 deb 1200.0
3 dfd1 2000.0
4 hghg -12077.5
5 df3df -2277.5
6 gfgf 1100.0
7 fggfg 1500.0
或者concat
使用DataFrame.stack
和Series.reset_index
作为默认索引值:
df = pd.concat([df2.stack().reset_index(drop=True),
df1.stack().reset_index(drop=True)],axis=1, keys=['Name','Income'])
print (df)
Name Income
0 abc -13036.0
1 dfd -30360.0
2 deb 1200.0
3 dfd1 2000.0
4 hghg -12077.5
5 df3df -2277.5
6 gfgf 1100.0
7 fggfg 1500.0
TA贡献1806条经验 获得超5个赞
尝试这个:
incomes = pd.concat([df1.income1, df1.income2], axis = 0)
names = pd.concat([df2.name1 , df2.name2] , axis = 0)
df = pd.DataFrame({'Name': names, 'Incomes': incomes})
添加回答
举报