1 回答
TA贡献1862条经验 获得超6个赞
使用__init__构造函数作为存储属性的容器。
在方法中执行所有相应的逻辑
from sklearn.datasets import make_classification
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
from sklearn.kernel_approximation import RBFSampler
from sklearn.datasets import load_breast_cancer
RANDOM_STATE = 123
class LinearSVCSub(LinearSVC):
def __init__(self, penalty='l2', loss='squared_hinge', sampler_gamma=None, sampler_n=None,
dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=1000, sampler=None):
super(LinearSVCSub, self).__init__(penalty=penalty, loss=loss, dual=dual, tol=tol,
C=C, multi_class=multi_class, fit_intercept=fit_intercept,
intercept_scaling=intercept_scaling, class_weight=class_weight,
verbose=verbose, random_state=random_state, max_iter=max_iter)
self.sampler_gamma = sampler_gamma
self.sampler_n = sampler_n
self.sampler = sampler
def fit(self, X, y, sample_weight=None):
X = self.transform_this(X)
super(LinearSVCSub, self).fit(X, y, sample_weight)
return self
def predict(self, X):
X = self.transform_this(X)
return super(LinearSVCSub, self).predict(X)
def score(self, X, y, sample_weight=None):
X = self.transform_this(X)
return super(LinearSVCSub, self).score(X, y, sample_weight)
def decision_function(self, X):
X = self.transform_this(X)
return super(LinearSVCSub, self).decision_function(X)
def transform_this(self, X):
if self.sampler:
X = RBFSampler(gamma=self.sampler_gamma, n_components=self.sampler_n).fit_transform(X)
return X
data = load_breast_cancer()
X, y = data.data, data.target
# Parameter tuning with custom LinearSVC
param_grid = {'C': [0.00001, 0.0005],
'dual': (True, False), 'random_state': [RANDOM_STATE],
'sampler_gamma': [0.90, 0.60, 0.30],
'sampler_n': [10, 200],
'sampler':[0,1]
}
gs_model = GridSearchCV(estimator=LinearSVCSub(sampler=1), verbose=1, param_grid=param_grid,
scoring='roc_auc', n_jobs=-1, cv=2)
gs_model.fit(X, y)
gs_model.cv_results_
添加回答
举报