3 回答
TA贡献1946条经验 获得超4个赞
基于维基百科上找到的转换函数:
import math
def freq_to_note(freq):
notes = ['A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#']
note_number = 12 * math.log2(freq / 440) + 49
note_number = round(note_number)
note = (note_number - 1 ) % len(notes)
note = notes[note]
octave = (note_number + 8 ) // len(notes)
return note, octave
示例:freq_to_note(440)返回('A', 4)
另一种方法是使用可用的包。
您可以使用 librosa 包:
import librosa
librosa.hz_to_note(440.0)
# will return ['A5']
或者我写的一个小包,名为 freq_note_converter:
import freq_note_converter
freq_note_converter.from_freq(440).note
# will return 'A'
顺便说一句,它们都支持舍入,例如 430 或 450 仍然会返回“A”。
TA贡献1963条经验 获得超6个赞
这是您需要的所有音乐信息,以便能够导出一个公式,告诉您给定频率距 A4 有多少个半色调:
A4 为 440 Hz(不是 400)。
任何两个相邻半色调的频率之间的比率是恒定的(例如A/Ab和Bb/A给出相同的数字)。
相距一个八度的两个音调的频率之比为 2。
一个八度中有十二个半音。
(最后两点将让您弄清楚第二点中的常数比率是多少。)
或者,您可以使用它来编写一个程序,该程序只需从 A4 向上或向下“步进”,直到达到(或通过)给定频率。
TA贡献1852条经验 获得超7个赞
在音乐理论中,通常的定义是每个八度有12个音符,上升一个八度会使频率加倍,A4被定义为440 Hz。同样重要的是要注意音符均匀分布在八度内。
使用这个定义,我们可以编写一个函数,当给定频率时,该函数返回音符和八度音程。
由于从 A4 到 A5 会乘以 2,并且我们需要均匀分布音符,这意味着向上移动音符必须恰好是加倍的 12 倍,因此从 A4 到 B4 必须乘以频率2 的 12 次方根 ( 2**(1/12))。
编写这样的函数并不简单,但也不难。我认为,虽然有时不给出解决方案本身更有利于学习,但在这种情况下,我最好展示解决方案并解释每个部分。
import math
def frequency_to_note(frequency):
# define constants that control the algorithm
NOTES = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] # these are the 12 notes in each octave
OCTAVE_MULTIPLIER = 2 # going up an octave multiplies by 2
KNOWN_NOTE_NAME, KNOWN_NOTE_OCTAVE, KNOWN_NOTE_FREQUENCY = ('A', 4, 440) # A4 = 440 Hz
# calculate the distance to the known note
# since notes are spread evenly, going up a note will multiply by a constant
# so we can use log to know how many times a frequency was multiplied to get from the known note to our note
# this will give a positive integer value for notes higher than the known note, and a negative value for notes lower than it (and zero for the same note)
note_multiplier = OCTAVE_MULTIPLIER**(1/len(NOTES))
frequency_relative_to_known_note = frequency / KNOWN_NOTE_FREQUENCY
distance_from_known_note = math.log(frequency_relative_to_known_note, note_multiplier)
# round to make up for floating point inaccuracies
distance_from_known_note = round(distance_from_known_note)
# using the distance in notes and the octave and name of the known note,
# we can calculate the octave and name of our note
# NOTE: the "absolute index" doesn't have any actual meaning, since it doesn't care what its zero point is. it is just useful for calculation
known_note_index_in_octave = NOTES.index(KNOWN_NOTE_NAME)
known_note_absolute_index = KNOWN_NOTE_OCTAVE * len(NOTES) + known_note_index_in_octave
note_absolute_index = known_note_absolute_index + distance_from_known_note
note_octave, note_index_in_octave = note_absolute_index // len(NOTES), note_absolute_index % len(NOTES)
note_name = NOTES[note_index_in_octave]
return (note_name, note_octave)
所以现在frequency_to_note(440)返回('A', 4),并frequency_to_note(740)返回('F#', 5),这似乎是正确的。
值得注意的是,这个函数并不关心哪个八度音阶有意义,所以像frequency_to_note(1)returns之类的东西('C', -4),因为如果我们确实有一架钢琴,通常使用八度音阶 1-7,并向左侧添加 5 个八度音阶,则 C请注意,最左边的八度确实是 1 Hz。因此,根据您的用例,如果八度不在 1 到 7 之间,您可能希望在最后引发异常。
添加回答
举报