您好,我有这些函数来展平我的复杂类型数据,将其提供给 NN 并将 NN 预测重建为原始形式。def flatten_input64(Input): #convert (:,4,4,2) complex matrix to (:,64) real vector Input1 = Input.reshape(-1, 32, order='F') Input_vector=np.zeros([19957,64],dtype = np.float64) Input_vector[:,0:32] = Input1.real Input_vector[:,32:64] = Input1.imag return Input_vectordef convert_output64(Output): #convert (:,64) real vector to (:,4,4,2) complex matrix Output1 = Output[:,0:32] + 1j * Output[:,32:64] output_matrix = Output1.reshape(-1, 4 ,4 ,2 , order = 'F') return output_matrix我正在编写一个自定义损失,要求所有操作都在 torch 中,并且我应该在 PyTorch 中重写我的转换函数。问题是 PyTorch 没有“F”顺序重塑。我尝试编写自己的 F reorder 版本,但是它不起作用。你知道我的错误是什么吗?def convert_output64_torch(input): # number_of_samples = defined for i in range(0, number_of_samples): Output1 = input[i,0:32] + 1j * input[i,32:64] Output2 = Output1.view(-1,4,4,2).permute(3,2,1,0) if i == 0: Output3 = Output2 else: Output3 = torch.cat((Output3, Output2),0)return Output3更新:在 @a_guest 评论之后,我尝试使用转置和重塑来重新创建矩阵,并且我得到的代码与 numy 中的 F 阶重塑相同:def convert_output64_torch(input): Output1 = input[:,0:32] + 1j * input[:,32:64] shape = (-1 , 4 , 4 , 2) Output3 = torch.transpose(torch.transpose(torch.reshape(torch.transpose(Output1,0,1),shape[::-1]),1,2),0,3)return Output3
1 回答
MMMHUHU
TA贡献1834条经验 获得超8个赞
在 Numpy 和 PyTorch 中,您可以通过以下操作获得等效的结果:(a.T.reshape(shape[::-1]).T其中a是数组或张量):
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> shape = (2, 8)
>>> a.reshape(shape, order='F')
array([[ 0, 8, 1, 9, 2, 10, 3, 11],
[ 4, 12, 5, 13, 6, 14, 7, 15]])
>>> a.T.reshape(shape[::-1]).T
array([[ 0, 8, 1, 9, 2, 10, 3, 11],
[ 4, 12, 5, 13, 6, 14, 7, 15]])
添加回答
举报
0/150
提交
取消