2 回答
TA贡献1946条经验 获得超3个赞
另一个三角形内的“中点三角形”由一个三角形定义,该三角形的坐标是周围三角形各边的中点:
因此,对于三角形的每条线/边,计算中点:
def lineMidPoint( p1, p2 ):
""" Return the mid-point on the line p1 to p2 """
# Ref: https://en.wikipedia.org/wiki/Midpoint
x1, y1 = p1
x2, y2 = p2
x_mid = round( ( x1 + x2 ) / 2 )
y_mid = round( ( y1 + y2 ) / 2 )
return ( x_mid, y_mid )
在您的情况下,这将被多次调用p1,p2并p3生成 3 个“角”三角形:
# midpoints of each size
mid_p1 = lineMidPoint( p1, p2 )
mid_p2 = lineMidPoint( p2, p3 )
mid_p3 = lineMidPoint( p3, p1 )
# The 3 "corner" triangles
upper_triangle = [ mid_p1, p2, mid_p2 ]
left_triangle = [ p1, mid_p1, mid_p3 ]
right_triangle = [ mid_p3, mid_p2, p3 ]
# The inner triangle (for the sake of completeness)
inner_triangle = [ mid_p1, mid_p2, mid_p3 ]
然后,您需要将其包装在递归调用中,并进行某种深度救助。
就像是:
def drawTriangle( window, colour, points, bailout=5 ):
if ( bailout > 0 ):
# Calculate the 3 inner corner-triangles
p1, p2, p3 = points
mid_p1 = lineMidPoint( p1, p2 )
mid_p2 = lineMidPoint( p2, p3 ) # mid-point of each side
mid_p3 = lineMidPoint( p3, p1 )
# triangles between the original corners, and new mid-points
upper_triangle = [ mid_p1, p2, mid_p2 ]
left_triangle = [ p1, mid_p1, mid_p3 ]
right_triangle = [ mid_p3, mid_p2, p3 ]
drawTriangle( window, colour, upper_triangle, bailout-1 )
drawTriangle( window, colour, left_triangle, bailout-1 )
drawTriangle( window, colour, right_triangle, bailout-1 )
else:
pygame.draw.lines( window, colour, True, points ) # draw triangle
我认为这画出了一个谢尔宾斯基三角形
TA贡献1891条经验 获得超3个赞
我不确定争论的目的degree是什么,也许是为了限制递归深度?
这是一个基于您的问题的示例,使用递归 sierpinski 函数:
import pygame
def draw_triangle(p1, p2, p3, color, line_width, screen):
pygame.draw.polygon(screen, color, [p1, p2, p3], line_width)
def midpoint(p1, p2):
""" Return the mid-point on the line p1 to p2 """
x1, y1 = p1
x2, y2 = p2
x_mid = (x1 + x2) // 2
y_mid = (y1 + y2) // 2
return (x_mid, y_mid)
def sierpinski(degree, p1, p2, p3, color, line_width, screen):
# p1 → bottom left, p2 → bottom right, p3 → top
# recursive function so check for exit condition first
if abs(p1[0] - p2[0]) <= 2 and abs(p2[0] - p3[0]) <= 2 and abs(p1[0] - p3[0]) <= 2:
return
draw_triangle(p1, p2, p3, color, line_width, screen)
a = midpoint(p1, p2)
b = midpoint(p1, p3)
c = midpoint(p2, p3)
# skip the centre triangle
sierpinski(degree, p1, a, b, color, line_width, screen)
sierpinski(degree, p2, a, c, color, line_width, screen)
sierpinski(degree, p3, b, c, color, line_width, screen)
height = 640
width = 640
pygame.init()
screen = pygame.display.set_mode((width, height), pygame.RESIZABLE)
pygame.display.set_caption("Sierpiński")
clock = pygame.time.Clock()
update_screen = True
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.VIDEORESIZE:
width, height = event.dict["size"]
screen = pygame.display.set_mode((width, height), pygame.RESIZABLE)
update_screen = True
if update_screen:
# only draw the screen when required
screen.fill(pygame.color.Color("white"))
# determine initial points based on window size
p1 = [5, height - 5]
p2 = [(width - 10) // 2, 5]
p3 = [width - 5, height - 5]
sierpinski(None, p1, p2, p3, pygame.color.Color("black"), 1, screen)
pygame.display.update()
update_screen = False
# limit framerate
clock.tick(30)
pygame.quit()
为了简洁起见,我删除了颜色处理,而是使用pygame.color.Color接受其构造函数的字符串参数。我还使用整数除法//来代替round(…).
根据递归函数的深度或复杂性,您可以重新绘制每一帧,但我想展示一个限制示例,以防函数复杂性增加。最后,我最近一直在调整屏幕大小,这似乎与一次绘制有关,所以我也将其包括在内。
编辑:我修改了该sierpinski函数以支持degree指定递归 dep 的参数
def sierpinski(degree, p1, p2, p3, color, line_width, screen):
# p1 → bottom left, p2 → bottom right, p3 → top
# recursive function so check for exit condition first
if degree is None:
if abs(p1[0] - p2[0]) <= 2 and abs(p2[0] - p3[0]) <= 2 and abs(p1[0] - p3[0]) <= 2:
return
else:
if degree == 0:
return
else:
degree -= 1
…
然后我添加了一些事件处理,以便可以使用鼠标滚轮来增加和减少度数,这显示在标题栏上:
elif event.type == pygame.MOUSEBUTTONUP:
if event.button == 4: # wheel up
if degree is None:
degree = 8
else:
degree += 1
if degree > maximum_degree:
degree = maximum_degree
update_screen = True
elif event.button == 5: # wheel down
if degree is None:
degree = 3
else:
degree -= 1
if degree < minimum_degree:
degree = minimum_degree
update_screen = True
…
添加回答
举报