2 回答
TA贡献1789条经验 获得超10个赞
您需要生成自己的季度日期列表,其中包括缺失的日期。然后您可以使用.reindex将数据框重新对齐到这个新的日期列表。
# Get the oldest and newest dates which will be the bounds
# for our new Index
first_date = df.index.min()
last_date = df.index.max()
# Generate dates for every 3 months (3M) from first_date up to last_date
quarterly = pd.date_range(first_date, last_date, freq="3M")
# realign our dataframe using our new quarterly date index
# this will fill NaN for dates that did not exist in the
# original index
out = df.reindex(quarterly)
# if you want to order this from most recent date to least recent date
# do: out.sort_index(ascending=False)
print(out)
revenue pct_yoy pct_qoq
2018-09-30 50.070 NaN NaN
2018-12-31 NaN NaN NaN
2019-03-31 61.727 NaN 0.232814
2019-06-30 67.424 NaN 0.092293
2019-09-30 73.941 NaN 0.096657
2019-12-31 83.930 0.676253 0.135094
2020-03-31 91.250 0.478283 0.087216
2020-06-30 99.721 0.479013 0.092833
TA贡献1872条经验 获得超3个赞
如果您的数据仅包含示例中的季度末日期,您可以使用resample和asfreq来填充缺失的quarter-ends
df_final = df.resample('Q').asfreq()[::-1]
Out[122]:
revenue pct_yoy pct_qoq
2020-06-30 99.721 0.479013 0.092833
2020-03-31 91.250 0.478283 0.087216
2019-12-31 83.930 0.676253 0.135094
2019-09-30 73.941 NaN 0.096657
2019-06-30 67.424 NaN 0.092293
2019-03-31 61.727 NaN 0.232814
2018-12-31 NaN NaN NaN
2018-09-30 50.070 NaN NaN
- 2 回答
- 0 关注
- 95 浏览
添加回答
举报