2 回答
TA贡献1851条经验 获得超5个赞
试试这个方法:
def nvidia_model():
model = Sequential()
model.add(Conv2D(24,(5,5), strides=(2, 2), input_shape=(66, 200, 3), activation='elu'))
model.add(Conv2D(36, (5,5), strides=(2, 2), activation='elu'))
model.add(Conv2D(48, (5,5), strides=(2, 2), activation='elu'))
model.add(Conv2D(64, (3,3), activation='elu'))
model.add(Conv2D(64, (3,3), activation='elu'))
# model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(50, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(10, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(1))
optimizer = Adam(lr=1e-3)
model.compile(loss='mse', optimizer=optimizer)
return model
model = nvidia_model()
print(model.summary())
- 2 回答
- 0 关注
- 147 浏览
添加回答
举报