我的数据帧或浮点数中都没有空值。但是,错误仍然存在。以下是有关我的数据的一些信息:关于空值(据我所知,numpy.nans 在 pandas 中被编码为浮点数): 关于数据类型:当我这样做时:from tensorflow.keras.preprocessing.text import Tokenizertitle_tokeniser = Tokenizer(num_words=10)title_tokeniser.fit_on_texts(train_set.loc[:,'title'] + test_set.loc[:,'title'])这是错误:---------------------------------------------------------------------------AttributeError Traceback (most recent call last)<ipython-input-38-26b704f1c0a1> in <module>() 1 title_tokeniser = Tokenizer(num_words=10)----> 2 title_tokeniser.fit_on_texts(train_set.loc[:,'title'] + test_set.loc[:,'title']) 3 4 # unique tokens found in titles are: 5 title_token_index = title_tokeniser.word_index1 frames/usr/local/lib/python3.6/dist-packages/keras_preprocessing/text.py in fit_on_texts(self, texts) 223 self.filters, 224 self.lower,--> 225 self.split) 226 for w in seq: 227 if w in self.word_counts:/usr/local/lib/python3.6/dist-packages/keras_preprocessing/text.py in text_to_word_sequence(text, filters, lower, split) 41 """ 42 if lower:---> 43 text = text.lower() 44 45 if sys.version_info < (3,):AttributeError: 'float' object has no attribute 'lower'
1 回答
红糖糍粑
TA贡献1815条经验 获得超6个赞
尝试这个
texts = pd.concat([train_set['title'] , test_set['title']],axis=0).astype("str")
from tensorflow.keras.preprocessing.text import Tokenize
title_tokeniser = Tokenizer(num_words=10)
title_tokeniser.fit_on_texts(texts)
添加回答
举报
0/150
提交
取消