为了账号安全,请及时绑定邮箱和手机立即绑定

考虑各种列条件对独特元素进行分类和计数

考虑各种列条件对独特元素进行分类和计数

一只斗牛犬 2023-10-31 16:13:11
你好,我正在使用 python 对一些数据进行分类:Articles                                       FilenameA New Marine Ascomycete from Brunei.    Invasive Species.csvA new genus and four new species        Forestry.csvA new genus and four new species        Invasive Species.csv我想知道每个“文件名”有多少个独特的“文章”。所以我想要的输出是这样的:Filename                             Count_UniqueInvasive Species.csv                 1Forestry.csv                         0另一件事,我也想得到这个输出:Filename1                        Filename2                         Count_Common articlesForestry.csv                     Invasive Species.csv               1我连接了数据集并最终计算了每个“文件名”中存在的元素。有谁愿意帮忙吗?我已经尝试过unique(), drop_duplicates()等,但似乎我无法得到我想要的输出。无论如何,这是我的代码的最后几行:concatenated = pd.concat(data, ignore_index =True)concatenatedconcatenated.groupby(['Title','Filename']).count().reset_index()res = {col:concatenated[col].value_counts() for col in concatenated.columns}res ['Filename']
查看完整描述

1 回答

?
胡说叔叔

TA贡献1804条经验 获得超8个赞

没有魔法。只是一些常规操作。


(1) 统计文件中“独特”的文章


编辑:添加(快速而肮脏)代码以包含计数为零的文件名


# prevent repetitive counting

df = df.drop_duplicates()


# articles to be removed (the ones appeared more than once)

dup_articles = df["Articles"].value_counts()

dup_articles = dup_articles[dup_articles > 1].index

# remove duplicate articles and count

mask_dup_articles = df["Articles"].isin(dup_articles)

df_unique = df[~mask_dup_articles]

df_unique["Filename"].value_counts()


# N.B. all filenames not shown here of course has 0 count.

#      I will add this part later on.


Out[68]: 

Invasive Species.csv    1

Name: Filename, dtype: int64


# unique article count with zeros

df_unique_nonzero_count = df_unique["Filename"].value_counts().to_frame().reset_index()

df_unique_nonzero_count.columns = ["Filename", "count"]


df_all_filenames = pd.DataFrame(

    data={"Filename": df["Filename"].unique()}

)

# join: all filenames with counted filenames

df_unique_count = df_all_filenames.merge(df_unique_nonzero_count, on="Filename", how="outer")

# postprocess

df_unique_count.fillna(0, inplace=True)

df_unique_count["count"] = df_unique_count["count"].astype(int)

# print

df_unique_count


Out[119]: 

               Filename  count

0  Invasive Species.csv      1

1          Forestry.csv      0

(2)统计文件之间的共同文章


# pick out records containing duplicate articles

df_dup = df[mask_dup_articles]

# merge on articles and then discard self- and duplicate pairs

df_merge = df_dup.merge(df_dup, on=["Articles"], suffixes=("1", "2"))

df_merge = df_merge[df_merge["Filename1"] > df_merge["Filename2"]] # alphabetical ordering

# count

df_ans2 = df_merge.groupby(["Filename1", "Filename2"]).count()

df_ans2.reset_index(inplace=True)  # optional

df_ans2


Out[70]: 

              Filename1     Filename2  Articles

0  Invasive Species.csv  Forestry.csv         1


查看完整回答
反对 回复 2023-10-31
  • 1 回答
  • 0 关注
  • 122 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信