为了账号安全,请及时绑定邮箱和手机立即绑定

在Python中从目录中的多个CSV文件中提取特定列

在Python中从目录中的多个CSV文件中提取特定列

牛魔王的故事 2023-10-11 16:15:17
我的目录中有大约 200 个 CSV 文件,其中包含不同的列,但有些文件包含我想要提取的数据。我想要拉的一列称为“程序”(行的顺序不同,但名称相同),另一列包含“建议”(并非所有措辞都相同,但它们都会包含该措辞)。最终,我想为每个 CSV 提取这些列下的所有行,并将它们附加到仅包含这两列的数据框中。我曾尝试先使用一个 CSV 执行此操作,但无法使其工作。这是我尝试过的:import pandas as pdfrom io import StringIOdf =  pd.read_csv("test.csv")dfout = pd.DataFrame(columns=['Programme', 'Recommends'])for file in [df]:    dfn = pd.read_csv(file)    matching = [s for s in dfn.columns if "would recommend" in s]    if matching:        dfn = dfn.rename(columns={matching[0]:'Recommends'})        dfout = pd.concat([dfout, dfn], join="inner")print(dfout)我收到以下错误消息,所以我认为这是格式问题(它不喜欢 pandas df?): ValueError(msg.format(_type=type(filepath_or_buffer))) ValueError: 无效的文件路径或缓冲区对象类型: <类'pandas.core.frame.DataFrame'>当我尝试这个时:csv1 = StringIO("""Programme,"Overall, I am satisfied with the quality of the programme",I would recommend the company to a friend or colleague,Please comment on any positive aspects of your experience of this programmeNursing,4,4,IMAGENursing,1,3,very goodNursing,4,5,I enjoyed studying tis programme""")csv2 = StringIO("""Programme,I would recommend the company to a friend,The programme was well organised and running smoothly,It is clear how students' feedback on the programme has been acted onIT,4,2,4IT,5,5,5IT,5,4,5""")dfout = pd.DataFrame(columns=['Programme', 'Recommends'])for file in [csv1,csv2]:    dfn = pd.read_csv(file)    matching = [s for s in dfn.columns if "would recommend" in s]    if matching:        dfn = dfn.rename(columns={matching[0]:'Recommends'})        dfout = pd.concat([dfout, dfn], join="inner")print(dfout)这工作正常,但我需要读取 CSV 文件。有任何想法吗?上面示例的预期输出: 
查看完整描述

1 回答

?
撒科打诨

TA贡献1934条经验 获得超2个赞

以下作品:


import pandas as pd

import glob


dfOut = []


for myfile in glob.glob("*.csv"):

    tmp = pd.read_csv(myfile, encoding='latin-1')

    

    matching = [s for s in tmp.columns if "would recommend" in s]

    if len(matching) > 0:

        tmp.rename(columns={matching[0]: 'Recommend'}, inplace=True)

        tmp = tmp[['Subunit', 'Recommend']]

        dfOut.append(tmp)

        

df = pd.concat(dfOut)


查看完整回答
反对 回复 2023-10-11
  • 1 回答
  • 0 关注
  • 83 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信