1 回答
![?](http://img1.sycdn.imooc.com/545869390001b87802200220-100-100.jpg)
TA贡献2041条经验 获得超4个赞
假设您要省略的像素值为 0。
在这种情况下,您可以做的是,首先找到非零值的索引,然后在 / 位置对图像进行切片min以max仅获得所需的区域,然后简单地应用extract_patches_2d所需的窗口大小和补丁数量。
例如,考虑到您提供的虚拟图像:
import numpy as np
from scipy.ndimage.filters import convolve
import matplotlib.pyplot as plt
background = np.ones((155,240))
background[78,120] = 2
n_d = 50
y,x = np.ogrid[-n_d: n_d+1, -n_d: n_d+1]
mask = x**2+y**2 <= n_d**2
mask = 254*mask.astype(float)
image_process = convolve(background, mask)-sum(sum(mask))+1
image_process[image_process==1] = 0
image_process[image_process==255] = 1
plt.figure()
plt.imshow(image_process)
plt.show()
from sklearn.feature_extraction.image import extract_patches_2d
x, y = np.nonzero(image_process)
xl,xr = x.min(),x.max()
yl,yr = y.min(),y.max()
only_desired_area = image_process[xl:xr+1, yl:yr+1]
window_shape = (25, 25)
B = extract_patches_2d(only_desired_area, window_shape, max_patches=100) # B shape will be (100, 25, 25)
如果绘制它,only_desired_area您将得到以下图像:
这是主要逻辑,如果您希望更紧的边界,您应该适当调整切片。
添加回答
举报