3 回答
TA贡献1783条经验 获得超4个赞
您可以使用 agg 获取每列的特定聚合:
df1_summary = (df1.agg(["mean", "std", "max"])
.rename(index={"mean": "Mean", "std": "St.Dev", "max": "Max"}))
print(df1_summary)
Prozess233 Prozess234 Prozess235
Mean 6.4 13.000000 9.000000
St.Dev 0.2 2.645751 3.605551
Max 6.6 15.000000 13.000000
然后如果你想将其填充到你的dfmaster
dfmaster = dfmaster.set_index("Process")
dfmaster.update(df1_summary.T)
print(dfmaster)
Mean St.Dev Max
Process
Prozess233 6.4 0.200000 6.6
Prozess234 13.0 2.645751 15.0
Prozess235 9.0 3.605551 13.0
TA贡献1790条经验 获得超9个赞
无需一一添加到 dfmaster,只需使用矢量化方法创建它:
import pandas as pd
data = [[6.2, 10, 8], [6.4, 15, 13], [6.6, 14, 6]]
df1 = pd.DataFrame(data, columns = ['Prozess233', 'Prozess234', 'Prozess235'])
dfmaster=pd.concat([df1.mean(), df1.std(), df1.max()], axis=1).reset_index()
dfmaster.columns = ['Process','Mean', 'St.Dev', 'Max']
#dfmaster
Process Mean St.Dev Max
0 Prozess233 6.4 0.200000 6.6
1 Prozess234 13.0 2.645751 15.0
2 Prozess235 9.0 3.605551 13.0
另外,根据您的需要考虑检查 的df1.describe()输出:
Prozess233 Prozess234 Prozess235
count 3.0 3.000000 3.000000
mean 6.4 13.000000 9.000000
std 0.2 2.645751 3.605551
min 6.2 10.000000 6.000000
25% 6.3 12.000000 7.000000
50% 6.4 14.000000 8.000000
75% 6.5 14.500000 10.500000
max 6.6 15.000000 13.000000
TA贡献1831条经验 获得超4个赞
虽然您可以使用 获取数据框的列df.columns,但几乎没有充分的理由迭代 pandas 数据框以进行简单的数学计算。
你所追求的可以用
df1.T.stack().groupby(level=0).agg({np.mean,np.std, max})
mean std max
Prozess233 6.4 0.200000 6.6
Prozess234 13.0 2.645751 15.0
Prozess235 9.0 3.605551 13.0
进一步细分:
转置数据框
dft=df1.T
dft
0 1 2
Prozess233 6.2 6.4 6.6
Prozess234 10.0 15.0 14.0
Prozess235 8.0 13.0 6.0
堆叠数据框
dfs=dft.stack()
dfs
Prozess233 0 6.2
1 6.4
2 6.6
Prozess234 0 10.0
1 15.0
2 14.0
Prozess235 0 8.0
1 13.0
2 6.0
dtype: float64
组和聚合
dfmaster=dfs.groupby(level=0).agg({np.mean,np.std, max})
dfmaster
mean std max
Prozess233 6.4 0.200000 6.6
Prozess234 13.0 2.645751 15.0
Prozess235 9.0 3.605551 13.0
添加回答
举报