1 回答
TA贡献1824条经验 获得超5个赞
您可以创建自定义数据集,以便还可以轻松检索文件名:
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras import Sequential
from glob2 import glob
from shutil import copy
import numpy as np
files = glob('group1\\*\\*.jpg')
imsize = 64
def load(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_png(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
img = tf.image.resize(img, size=(imsize, imsize))
return img, file_path
ds = tf.data.Dataset.from_tensor_slices(files).\
take(100).\
shuffle(100).\
map(load).batch(4)
model = Sequential()
model.add(Conv2D(8, (3, 3), input_shape=(imsize, imsize, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(units=32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=2, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.build(input_shape=(imsize, imsize, 3))
categories = np.array(['cats', 'dogs'])
target_dir = 'newpics'
for cat in categories:
os.makedirs(os.path.join(target_dir, cat), exist_ok=True)
for images, filenames in ds:
preds = model(images)
targets = categories[np.argmax(preds, axis=1)]
for file, destination in zip(filenames, targets):
copy(file.numpy().decode(), os.path.join(target_dir, destination,
os.path.basename(file.numpy().decode())
))
print(file.numpy().decode(), '-->', os.path.join(target_dir, destination,
os.path.basename(file.numpy().decode())
))
group1\cats\cat.4051.jpg --> newpics\cats\cat.4051.jpg
group1\cats\cat.4091.jpg --> newpics\dogs\cat.4091.jpg
group1\cats\cat.4055.jpg --> newpics\cats\cat.4055.jpg
group1\cats\cat.4041.jpg --> newpics\cats\cat.4041.jpg
group1\cats\cat.4090.jpg --> newpics\cats\cat.4090.jpg
group1\cats\cat.4071.jpg --> newpics\dogs\cat.4071.jpg
group1\cats\cat.4082.jpg --> newpics\cats\cat.4082.jpg
group1\cats\cat.4037.jpg --> newpics\cats\cat.4037.jpg
group1\cats\cat.4005.jpg --> newpics\cats\cat.4005.jpg
您需要更改的只是全局模式和文件夹。
添加回答
举报