1 回答
![?](http://img1.sycdn.imooc.com/54586453000163bd02200220-100-100.jpg)
TA贡献1852条经验 获得超7个赞
对我来说,你的代码看起来完全正确!至少算法是正确的。我已经更改了您的代码以用于numpy
快速计算而不是纯Python。另外,我还配置了一些参数,例如改变了动量和学习率,也实现了MSE
。
然后我用来matplotlib
画情节动画。最后,在动画上,看起来您的回归实际上试图将曲线拟合到数据。尽管在最后一次拟合迭代中它sin(x)
看起来像线性近似,但仍然尽可能接近二次曲线的数据点。但对于for in来说,它看起来像是理想的近似(它从迭代周围开始拟合)。x
[0; 2 * pi]
sin(x)
x
[0; pi]
12-th
i-th
动画帧只是用 进行回归dErr = 0.7 ** (i + 15)
。
我的动画运行脚本有点慢,但是如果您save
像这样添加参数python script.py save
,它将渲染/保存以line.gif
绘制绘图动画。如果您在没有参数的情况下运行脚本,它将在您的 PC 屏幕上实时绘制/拟合动画。
完整的代码在图形之后,代码需要通过运行一次安装一些Python模块python -m pip install numpy matplotlib
。
接下来是sin(x)
在x
:(0, pi)
接下来是sin(x)
在x
:(0, 2 * pi)
接下来是abs(x)
在x
:(-1, 1)
# Needs: python -m pip install numpy matplotlib
import math, sys
import numpy as np, matplotlib.pyplot as plt, matplotlib.animation as animation
from matplotlib.animation import FuncAnimation
x_range = (0., math.pi, 0.1) # (xmin, xmax, xstep)
y_range = (-0.2, 1.2) # (ymin, ymax)
num_iterations = 50
def f(x):
return np.sin(x)
def derr(iteration):
return 0.7 ** (iteration + 15)
def MSE(a, b):
return (np.abs(np.array(a) - np.array(b)) ** 2).mean()
def quadraticRegression(*, x, data, dErr):
x, data = np.array(x), np.array(data)
assert x.size == data.size, (x.size, data.size)
a = 1 #Starting values
b = 1
c = 1
a_momentum = 0.1 #Momentum to counter steady state error
b_momentum = 0.1
c_momentum = 0.1
estimate = a*x**2 + b*x + c #Estimate curve
error = MSE(data, estimate) #Get errors 'n stuff
errorOld = 0.
lr = 10. ** -4 #learning rate
while abs(error - errorOld) > dErr:
#Fit a (dE/da)
deda = np.sum(2*x**2 * (a*x**2 + b*x + c - data))/len(data)
correction = deda*lr
a_momentum = (a_momentum)*0.99 + correction*0.1 #0.99 is to slow down momentum when correction speed changes
a = a - correction - a_momentum
#fit b (dE/db)
dedb = np.sum(2*x*(a*x**2 + b*x + c - data))/len(data)
correction = dedb*lr
b_momentum = (b_momentum)*0.99 + correction*0.1
b = b - correction - b_momentum
#fit c (dE/dc)
dedc = np.sum(2*(a*x**2 + b*x + c - data))/len(data)
correction = dedc*lr
c_momentum = (c_momentum)*0.99 + correction*0.1
c = c - correction - c_momentum
#Update model and find errors
estimate = a*x**2 +b*x + c
errorOld = error
#print(error)
error = MSE(data, estimate)
return a, b, c, error
fig, ax = plt.subplots()
fig.set_tight_layout(True)
x = np.arange(x_range[0], x_range[1], x_range[2])
#ax.scatter(x, x + np.random.normal(0, 3.0, len(x)))
line0, line1 = None, None
do_save = len(sys.argv) > 1 and sys.argv[1] == 'save'
def g(x, derr):
a, b, c, error = quadraticRegression(x = x, data = f(x), dErr = derr)
return a * x ** 2 + b * x + c
def dummy(x):
return np.ones_like(x, dtype = np.float64) * 100.
def update(i):
global line0, line1
de = derr(i)
if line0 is None:
assert line1 is None
line0, = ax.plot(x, f(x), 'r-', linewidth=2)
line1, = ax.plot(x, g(x, de), 'r-', linewidth=2, color = 'blue')
ax.set_ylim(y_range[0], y_range[1])
if do_save:
sys.stdout.write(str(i) + ' ')
sys.stdout.flush()
label = 'iter {0} derr {1}'.format(i, round(de, math.ceil(-math.log(de) / math.log(10)) + 2))
line1.set_ydata(g(x, de))
ax.set_xlabel(label)
return line1, ax
if __name__ == '__main__':
anim = FuncAnimation(fig, update, frames = np.arange(0, num_iterations), interval = 200)
if do_save:
anim.save('line.gif', dpi = 200, writer = 'imagemagick')
else:
plt.show()
添加回答
举报