为了账号安全,请及时绑定邮箱和手机立即绑定

如何将下载并解压的文本文件加载到 pandas 数据框中?

如何将下载并解压的文本文件加载到 pandas 数据框中?

繁花不似锦 2023-09-12 19:59:42
以下代码下载并解压包含数千个文本文件的文件zip_file_url = "https://docsia-temp.s3-sa-east-1.amazonaws.com/docsia-desafio-dataset.zip"res = requests.get(zip_file_url, stream=True) # fazendo o request do dadoprint("fazendo o download...")z = zipfile.ZipFile(io.BytesIO(res.content))print("extraindo os dados")z.extractall("./")print("ok..")如何将这些文件加载到 pandas 数据框中?
查看完整描述

1 回答

?
莫回无

TA贡献1865条经验 获得超7个赞

  • 查看代码的内联解释

  • 代码使用pathlib模块来查找已经解压的文件

  • 有 20 种文章类型,这意味着数据框字典中有 20 个键dd

  • 每个键的值是一个数据框,其中包含每种文章类型的所有文章。

    • 每个数据框有 1000 行,每篇文章 1 行。

  • 总共有20000篇文章。

  • 此实现将保持文章的形状。

    • 当从数据框中打印一行时,文章将采用带有换行符和标点符号的可读形式。

  • 要从各个数据帧创建单个数据帧:

    • dfc = pd.concat(dd.values()).reset_index(drop=True)

    • 这就是'type'在最初创建数据框时添加列的原因。在组合数据框中,文章类型将是可识别的。

  • 这回答了如何将所有文件加载到数据框中的问题。

  • 有关处理文本的更多问题,请提出新问题。

from pathlib import Path

from io import BytesIO

import requests

import pandas as pd

from collections import defaultdict

from zipfile import ZipFile


######################################################################

# download and save zipped files


# location to save files; this create a pathlib object of the path, and patlib objects have methods, like rglob, parts, and is_file

save_path = Path('data/zipped')


zip_file_url = "https://docsia-temp.s3-sa-east-1.amazonaws.com/docsia-desafio-dataset.zip"

res = requests.get(zip_file_url, stream=True)


with ZipFile(BytesIO(res.content), 'r') as zip_ref:

    zip_ref.extractall(save_path)

######################################################################


# find all the files; the methods in this list comprehension are pathlib methods

files = [file for file in list(save_path.rglob('*')) if file.is_file()]


# dict to save dataframes for each file

dd = defaultdict(list)

for file in files:

    

    # extract the type of article from the path

    article_type = file.parts[-2].replace('.', '_')

    

    # open the file

    with file.open(mode='r', encoding='utf-8', errors='ignore') as f:

        # read the lines and combine them into one string inside a list

        f = [' '.join([line for line in f.readlines() if line.strip()])]

        

    # create a dataframe from f

    df = pd.DataFrame(f, columns=['article'])

    

    # add a column for the article type

    df['type'] = article_type

    

    # add the dataframe to the default dict

    dd[article_type].append(df.copy())


# each value of the dict is a list of dataframes, iterate through all keys and create a single dataframe for each key

for k, v in dd.items():

    # for all the article type, combine all the dataframes into a single dataframe

    dd[k] = pd.concat(v).reset_index(drop=True)

print(dd.keys())

[out]:

dict_keys(['alt_atheism', 'comp_graphics', 'comp_os_ms-windows_misc', 'comp_sys_ibm_pc_hardware', 'comp_sys_mac_hardware', 'comp_windows_x', 'misc_forsale', 'rec_autos', 'rec_motorcycles', 'rec_sport_baseball', 'rec_sport_hockey', 'sci_crypt', 'sci_electronics', 'sci_med', 'sci_space', 'soc_religion_christian', 'talk_politics_guns', 'talk_politics_mideast', 'talk_politics_misc', 'talk_religion_misc'])


# print the first article for the alt_atheism key

print(dd['alt_atheism'].iloc[0, 0])

[out]:

Xref: cantaloupe.srv.cs.cmu.edu alt.atheism:49960 alt.atheism.moderated:713 news.answers:7054 alt.answers:126

 Path: cantaloupe.srv.cs.cmu.edu!crabapple.srv.cs.cmu.edu!bb3.andrew.cmu.edu!news.sei.cmu.edu!cis.ohio-state.edu!magnus.acs.ohio-state.edu!usenet.ins.cwru.edu!agate!spool.mu.edu!uunet!pipex!ibmpcug!mantis!mathew

 From: mathew <mathew@mantis.co.uk>

 Newsgroups: alt.atheism,alt.atheism.moderated,news.answers,alt.answers

 Subject: Alt.Atheism FAQ: Atheist Resources

 Summary: Books, addresses, music -- anything related to atheism

 Keywords: FAQ, atheism, books, music, fiction, addresses, contacts

 Message-ID: <19930329115719@mantis.co.uk>

 Date: Mon, 29 Mar 1993 11:57:19 GMT

 Expires: Thu, 29 Apr 1993 11:57:19 GMT

 Followup-To: alt.atheism

 Distribution: world

 Organization: Mantis Consultants, Cambridge. UK.

 Approved: news-answers-request@mit.edu

 Supersedes: <19930301143317@mantis.co.uk>

 Lines: 290

 Archive-name: atheism/resources

...


查看完整回答
反对 回复 2023-09-12
  • 1 回答
  • 0 关注
  • 74 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信