1 回答
![?](http://img1.sycdn.imooc.com/54584cc500019c5b02200220-100-100.jpg)
TA贡献1876条经验 获得超6个赞
这是您问题的有效解决方案。我目前的假设是仪器的采样率是相同的。由于您没有提供任何样本,所以我生成了一些数据。答案基于连接Wavelength列上的两个数据帧。
import pandas as pd
import numpy as np
##generating the test data
black_lambda = np.arange(300.2,795.5,0.1)
red_lambda = np.arange(199.975,1027.43,0.1)
I_black = np.random.random((1,len(black_lambda))).ravel()
I_red = np.random.random((1,len(red_lambda))).ravel()
df = pd.DataFrame([black_lambda,I_black]).T
df1 = pd.DataFrame([red_lambda,I_red]).T
df.columns=['lambda','I_black']
df1.columns=['lambda','I_red']
从这里开始:
#setting lambda as index for both dataframes
df.set_index(['lambda'],inplace=True)
df1.set_index(['lambda'],inplace=True)
#concatenating/merging both dataframes into one
df3 = pd.concat([df,df1],axis=1)
#since both dataframes are not of same length, there will be some missing values. Taking care of them by filling previous values (optional).
df3.fillna(method='bfill',inplace=True)
df3.fillna(method='ffill',inplace=True)
#creating a new column 'division' to finish up the task
df3['division'] = df3['I_black'] / df3['I_red']
print(df3)
输出:
I_black I_red division
lambda
199.975 0.855777 0.683906 1.251308
200.075 0.855777 0.305783 2.798643
200.175 0.855777 0.497258 1.720993
200.275 0.855777 0.945699 0.904915
200.375 0.855777 0.910735 0.939655
... ... ... ...
1026.975 0.570973 0.637064 0.896258
1027.075 0.570973 0.457862 1.247042
1027.175 0.570973 0.429709 1.328743
1027.275 0.570973 0.564804 1.010924
1027.375 0.570973 0.246437 2.316917
添加回答
举报