4 回答
TA贡献1803条经验 获得超3个赞
groupby
这是和的潜在解决方案map
:
#filtering the data with >=3 ratings
filtered_data = df[df['star_rating'] >= 3]
#creating a dict containing the counts of the all the favorable reviews
d = filtered_data.groupby('restaurant_id')['star_rating'].count().to_dict()
#mapping the dictionary to the restaurant_id to generate 'nb_fave_rating'
df['nb_fave_rating'] = df['restaurant_id'].map(d)
#taking care of `NaN` values
df.fillna(0,inplace=True)
#making the column integer (just to match the requirements)
df['nb_fave_rating'] = df['nb_fave_rating'].astype(int)
print(df)
输出:
rating_id user_id restaurant_id star_rating rating_year first_year last_year nb_fave_rating
0 1 56 xxx 2.3 2012 2012 2020 1
1 2 13 xxx 3.7 2012 2012 2020 1
2 3 56 yyy 1.2 2020 2001 2020 1
3 4 99 yyy 5.0 2001 2001 2020 1
4 5 99 xxx 1.0 2020 2012 2020 1
5 6 13 zzz 3.2 2015 2000 2015 1
6 7 12 zzz 1.0 2000 2000 2015 1
7 8 88 eee 2.2 2003 2001 2020 0
8 9 45 eee 0.2 2004 2001 2020
TA贡献1821条经验 获得超4个赞
在一行中完成。
groupby()、transform布尔选择并将结果转换为integer.
df['nb_fave_rating']=df.groupby('restaurant_id')['star_rating'].transform(lambda x: int((x>=3).sum()))
rating_id user_id restaurant_id star_rating rating_year first_year \
0 1 56 xxx 2.3 2012 2012
1 2 13 xxx 3.7 2012 2012
2 3 56 yyy 1.2 2020 2001
3 4 99 yyy 5.0 2001 2001
4 5 99 xxx 1.0 2020 2012
5 6 13 zzz 3.2 2015 2000
6 7 12 zzz 1.0 2000 2000
7 8 88 eee 2.2 2003 2001
8 9 45 eee 0.2 2004 2001
last_year nb_fave_rating
0 2020 1.0
1 2020 1.0
2 2020 1.0
3 2020 1.0
4 2020 1.0
5 2015 1.0
6 2015 1.0
7 2020 0.0
8 2020 0.0
TA贡献1830条经验 获得超9个赞
Grayrigel的解决方案(使用)是最快的解决方案。
map
用于获取每个的
.groupby
评分计数>=3
restaurant_id
.merge
positive_reviews
回到df
.
positive_reviews = df[df.star_rating >= 3.0 ].groupby('restaurant_id', as_index=False).agg({'star_rating': 'count'}).rename(columns={'star_rating': 'nb_fave_rating'})
# join back to df
df = df.merge(positive_reviews, how='left', on='restaurant_id').fillna(0)
# display(df)
rating_id user_id restaurant_id star_rating rating_year first_year last_year nb_fave_rating
0 1 56 xxx 2.3 2012 2012 2020 1.0
1 2 13 xxx 3.7 2012 2012 2020 1.0
2 3 56 yyy 1.2 2020 2001 2020 1.0
3 4 99 yyy 5.0 2001 2001 2020 1.0
4 5 99 xxx 1.0 2020 2012 2020 1.0
5 6 13 zzz 3.2 2015 2000 2015 1.0
6 7 12 zzz 1.0 2000 2000 2015 1.0
7 8 88 eee 2.2 2003 2001 2020 0.0
8 9 45 eee 0.2 2004 2001 2020 0.0
%timeit比较
给定 9 行数据框,df在问题中
# create a test dataframe of 1,125,000 rows
dfl = pd.concat([df] * 125000).reset_index(drop=True)
# test with transform
def add_rating_transform(df):
return df.groupby('restaurant_id')['star_rating'].transform(lambda x: int((x>=3).sum()))
%timeit add_rating_transform(dfl)
[out]:
222 ms ± 9.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# test with map
def add_rating_map(df):
filtered_data = df[df['star_rating'] >= 3]
d = filtered_data.groupby('restaurant_id')['star_rating'].count().to_dict()
return df['restaurant_id'].map(d).fillna(0).astype(int)
%timeit add_rating_map(dfl)
[out]:
105 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# test with merge
def add_rating_merge(df):
positive_reviews = df[df.star_rating >= 3.0 ].groupby('restaurant_id', as_index=False).agg({'star_rating': 'count'}).rename(columns={'star_rating': 'nb_fave_rating'})
return df.merge(positive_reviews, how='left', on='restaurant_id').fillna(0)
%timeit add_rating_merge(dfl)
[out]:
639 ms ± 26.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
TA贡献1801条经验 获得超15个赞
统计评分 >= 3.0 的情况
df['nb_fave_rating'] = df.groupby('restaurant_id')['star_rating'].transform(lambda x: x.ge(3.0).sum()).astype(np.int)
添加回答
举报