为了账号安全,请及时绑定邮箱和手机立即绑定

大熊猫中棘手的级联分组

大熊猫中棘手的级联分组

汪汪一只猫 2023-07-11 18:15:25
我想在 pandas 中解决一个奇怪的问题。假设我有一堆对象,它们有不同的分组方式。这是我们的数据框的样子:df=pd.DataFrame([    {'obj': 'Ball',    'group1_id': None, 'group2_id': '7' },    {'obj': 'Balloon', 'group1_id': '92', 'group2_id': '7' },    {'obj': 'Person',  'group1_id': '14', 'group2_id': '11'},    {'obj': 'Bottle',  'group1_id': '3',  'group2_id': '7' },    {'obj': 'Thought', 'group1_id': '3',  'group2_id': None},])obj       group1_id          group2_idBall      None               7Balloon   92                 7Person    14                 11Bottle    3                  7Thought   3                  None我想根据任何组将事物分组在一起。这里注释一下:obj       group1_id          group2_id    # annotatedBall      None               7            #                   group2_id = 7Balloon   92                 7            # group1_id = 92 OR group2_id = 7Person    14                 11           # group1_id = 14 OR group2_id = 11Bottle    3                  7            # group1_id =  3 OR group2_id = 7Thought   3                  None         # group1_id = 3组合后,我们的输出应如下所示:count         objs                               composite_id4             [Ball, Balloon, Bottle, Thought]   g1=3,92|g2=71             [Person]                           g1=11|g2=14请注意,我们可以获得的前三个对象group2_id=7,然后是第四个对象Thought,是因为它可以通过group1_id=3为其分配group_id=7id 来与另一个项目匹配。注意:对于这个问题,假设一个项目只会属于一个组合组(并且永远不会有可能属于两个组的情况)。我怎样才能做到这一点pandas?
查看完整描述

2 回答

?
郎朗坤

TA贡献1921条经验 获得超9个赞

这一点也不奇怪~网络问题


import networkx as nx

#we need to handle the miss value first , we fill it with same row, so that we did not calssed them into wrong group

df['key1']=df['group1_id'].fillna(df['group2_id'])

df['key2']=df['group2_id'].fillna(df['group1_id'])

# here we start to create the network

G=nx.from_pandas_edgelist(df, 'key1', 'key2')

l=list(nx.connected_components(G))

L=[dict.fromkeys(y,x) for x, y in enumerate(l)]

d={k: v for d in L for k, v in d.items()}

# we using above dict to map the same group into the same one in order to groupby them 

out=df.groupby(df.key1.map(d)).agg(objs = ('obj',list) , Count = ('obj','count'), g1= ('group1_id', lambda x : set(x[x.notnull()].tolist())), g2= ('group2_id',  lambda x : set(x[x.notnull()].tolist())))

# notice here I did not conver the composite id into string format , I keep them into different columns which more easy to understand 

Out[53]: 

                                  objs  Count       g1    g2

key1                                                        

0     [Ball, Balloon, Bottle, Thought]      4  {92, 3}   {7}

1                             [Person]      1     {14}  {11}


查看完整回答
反对 回复 2023-07-11
?
红糖糍粑

TA贡献1815条经验 获得超6个赞

这里有一个更详细的解决方案,我为分组集合构建了“第一个键”的映射:


# using four id fields instead of 2

grouping_fields = ['group1_id', 'group2_id', 'group3_id', 'group4_id']

id_fields = df.loc[df[grouping_fields].notnull().any(axis=1), grouping_fields]


# build a set of all similarly-grouped items

# and use the 'first seen' as the grouping key for that

FIRST_SEEN_TO_ALL = defaultdict(set)

KEY_TO_FIRST_SEEN = {}


for row in id_fields.to_dict('records'):

    # why doesn't nan fall out in a boolean check?

    keys = [id for id in row.values() if id and (str(id) != 'nan')]

    row_id = keys[0]

    for key in keys:

        if (row_id != key) or (key not in KEY_TO_FIRST_SEEN):

            KEY_TO_FIRST_SEEN[key] = row_id

            first_seen_key = row_id

        else:

            first_seen_key = KEY_TO_FIRST_SEEN[key]

        FIRST_SEEN_TO_ALL[first_seen_key].add(key)


def fetch_group_id(row):

    keys = filter(None, row.to_dict().values())

    for key in keys:

        first_seen_key = KEY_TO_FIRST_SEEN.get(key)

        if first_seen_key: 

            return first_seen_key


df['group_super'] = df[grouping_fields].apply(fetch_group_id, axis=1)


查看完整回答
反对 回复 2023-07-11
  • 2 回答
  • 0 关注
  • 114 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信