2 回答
TA贡献1921条经验 获得超9个赞
这里有几个问题。
您的输入没有时间步长,您需要输入形状
(n, time steps, features)
在 中
input_shape
,时间步长维度首先出现,而不是最后出现您的最后一个 LSTM 层返回序列,因此您无法将其与 0 和 1 进行比较
我做了什么:
我向您的数据添加了时间步 (7)
我排列了尺寸
input_shape
我定了最后的结局
return_sequences=False
使用生成的数据完全修复示例:
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
batch = 20
n_samples = 1000
timesteps = 7
features = 10
x_train = np.random.rand(n_samples, timesteps, features)
y_train = keras.utils.to_categorical(np.random.randint(0, 10, n_samples))
input_layer = keras.Input(shape=(timesteps, features),batch_size=batch)
dense = layers.LSTM(16, activation="sigmoid", return_sequences=True)(input_layer)
hidden_layer_2 = layers.LSTM(16, activation="sigmoid", return_sequences=False)(dense)
output_layer = layers.Dense(10, activation="softmax")(hidden_layer_2)
model = keras.Model(inputs=input_layer, outputs=output_layer, name="my_model")
model.compile(loss='categorical_crossentropy', optimizer='adam')
history = model.fit(x_train, y_train)
Train on 1000 samples
20/1000 [..............................] - ETA: 2:50 - loss: 2.5145
200/1000 [=====>........................] - ETA: 14s - loss: 2.3934
380/1000 [==========>...................] - ETA: 5s - loss: 2.3647
560/1000 [===============>..............] - ETA: 2s - loss: 2.3549
740/1000 [=====================>........] - ETA: 1s - loss: 2.3395
900/1000 [==========================>...] - ETA: 0s - loss: 2.3363
1000/1000 [==============================] - 4s 4ms/sample - loss: 2.3353
TA贡献1878条经验 获得超4个赞
您的模型的正确输入是 (20, 37, 42)。注意:这里20是您明确指定的batch_size。
代码:
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
batch = 20
timesteps = 42
training_units = 0.85
x1 = tf.constant(np.random.randint(50, size =(1000,37, 42)), dtype = tf.float32)
y1 = tf.constant(np.random.randint(10, size =(1000,)), dtype = tf.int32)
input_layer = keras.Input(shape=(37,timesteps),batch_size=batch)
dense = layers.LSTM(150, activation="sigmoid", return_sequences=True)
x = dense(input_layer)
hidden_layer_2 = layers.LSTM(150, activation="sigmoid", return_sequences=True)(x)
hidden_layer_3 = layers.Flatten()(hidden_layer_2)
output_layer = layers.Dense(10, activation="softmax")(hidden_layer_3)
model = keras.Model(inputs=input_layer, outputs=output_layer, name="my_model")
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
tf.keras.utils.plot_model(model, 'my_first_model.png', show_shapes=True)
模型架构:
您可以清楚地看到输入大小。
要运行的代码:
model.fit(x = x1, y = y1, batch_size = batch, epochs = 10)
注意:无论您指定了何种batch_size,都必须在 model.fit() 命令中指定相同的batch_size。
输出:
Epoch 1/10
50/50 [==============================] - 4s 89ms/step - loss: 2.3288 - accuracy: 0.0920
Epoch 2/10
50/50 [==============================] - 5s 91ms/step - loss: 2.3154 - accuracy: 0.1050
Epoch 3/10
50/50 [==============================] - 5s 101ms/step - loss: 2.3114 - accuracy: 0.0900
Epoch 4/10
50/50 [==============================] - 5s 101ms/step - loss: 2.3036 - accuracy: 0.1060
Epoch 5/10
50/50 [==============================] - 5s 99ms/step - loss: 2.2998 - accuracy: 0.1000
Epoch 6/10
50/50 [==============================] - 4s 89ms/step - loss: 2.2986 - accuracy: 0.1170
Epoch 7/10
50/50 [==============================] - 4s 84ms/step - loss: 2.2981 - accuracy: 0.1300
Epoch 8/10
50/50 [==============================] - 5s 103ms/step - loss: 2.2950 - accuracy: 0.1290
Epoch 9/10
50/50 [==============================] - 5s 106ms/step - loss: 2.2960 - accuracy: 0.1210
Epoch 10/10
50/50 [==============================] - 5s 97ms/step - loss: 2.2874 - accuracy: 0.1210
添加回答
举报