1 回答
![?](http://img1.sycdn.imooc.com/56fb3e3d0001a10301000100-100-100.jpg)
TA贡献1836条经验 获得超5个赞
对于第一个问题,您只需重命名列或删除一个级别。对于第二个问题,取第一个和最后一个并计算差异:
df = pd.DataFrame([["5f4dde2e9f742701e3d9a15c",214.55,29077675,"2020-09-01T11:07:50.000Z"],
["5f4dde2f9f742701e3d9a15d",214.55,29077690,"2020-09-01T11:07:50.000Z"],
["5f4dde2f9f742701e3d9a15e",214.65,29077690,"2020-09-01T11:07:51.000Z"],
["5f4dde309f742701e3d9a15f",214.65,29077900,"2020-09-01T11:07:51.000Z"],
["5f4dde309f742701e3d9a160",214.6,29077900,"2020-09-01T11:07:52.000Z"],
["5f4dde319f742701e3d9a161",214.7,29078191,"2020-09-01T11:07:53.000Z"],
["5f4dde329f742701e3d9a162",214.6,29078769,"2020-09-01T11:07:54.000Z"],
["5f4dde339f742701e3d9a163",214.65,29078832,"2020-09-01T11:07:55.000Z"]], columns = ["_id","ltp","volume","time"])
df["time"] = pd.to_datetime(df["time"])
df = df.set_index("time")
data = df.resample('1S').agg({'ltp': ['first', 'max', 'min', 'last'], 'volume': ['first','last']})
data.columns = ["_".join(x) for x in data.columns.ravel()]
data["volumne_metric"] = data["volume_last"]-data["volume_first"]
输出:
ltp_first ltp_max ltp_min ltp_last volume_first volume_last volumne_metric
time
2020-09-01 11:07:50+00:00 214.55 214.55 214.55 214.55 29077675 29077690 15
2020-09-01 11:07:51+00:00 214.65 214.65 214.65 214.65 29077690 29077900 210
2020-09-01 11:07:52+00:00 214.60 214.60 214.60 214.60 29077900 29077900 0
2020-09-01 11:07:53+00:00 214.70 214.70 214.70 214.70 29078191 29078191 0
2020-09-01 11:07:54+00:00 214.60 214.60 214.60 214.60 29078769 29078769 0
2020-09-01 11:07:55+00:00 214.65 214.65 214.65 214.65 29078832 29078832 0
添加回答
举报