2 回答
TA贡献1876条经验 获得超5个赞
使用列表理解来测试产品列表的最小值和最大值:
#select all columns without first
df1 = df.iloc[:, 1:]
cols = df1.columns.to_numpy()
df['most_sold'] = [cols[x].tolist() for x in df1.eq(df1.max(axis=1), axis=0).to_numpy()]
df['least_sold'] = [cols[x].tolist() for x in df1.eq(df1.min(axis=1), axis=0).to_numpy()]
print (df)
id product1sold product2sold product3sold most_sold \
0 1 2 3 3 [product2sold, product3sold]
1 2 0 0 5 [product3sold]
2 3 3 2 1 [product1sold]
least_sold
0 [product1sold]
1 [product1sold, product2sold]
2 [product3sold]
如果性能不重要,可以使用DataFrame.apply
:
df1 = df.iloc[:, 1:]
f = lambda x: x.index[x].tolist()
df['most_sold'] = df1.eq(df1.max(axis=1), axis=0).apply(f, axis=1)
df['least_sold'] = df1.eq(df1.min(axis=1), axis=0).apply(f, axis=1)
TA贡献1963条经验 获得超6个赞
你可以做这样的事情。
minValueCol = yourDataFrame.idxmin(axis=1)
maxValueCol = yourDataFrame.idxmax(axis=1)
添加回答
举报