为了账号安全,请及时绑定邮箱和手机立即绑定

将现有列作为移动平均值复制到数据框

将现有列作为移动平均值复制到数据框

繁花如伊 2023-06-20 13:51:38
我想我想多了——我正在尝试复制现有的 pandas 数据框列和值并进行滚动平均——我不想覆盖原始数据。我正在遍历列,获取列和值,将滚动的 7 天 ma 作为新列,后缀_ma作为原始副本的副本。我想将现有数据与 7 天 MA 进行比较,并查看数据来自 7 天 MA 的标准偏差 - 我可以弄清楚 - 我只是想将 MA 数据保存为新数据框。我有for column in original_data[ma_columns]:    ma_df = pd.DataFrame(original_data[ma_columns].rolling(window=7).mean(), columns = str(column)+'_ma')并得到错误:Index(...) must be called with a collection of some kind, 'Carrier_AcctPswd_ma' was passed但是如果我迭代for column in original_data[ma_columns]:    print('Colunm Name : ', str(column)+'_ma')    print('Contents : ', original_data[ma_columns].rolling(window=7).mean())我得到了我需要的数据:我的问题只是将其保存为一个新的数据框,我可以将其连接到旧的,然后进行分析。编辑我现在已经能够制作一堆数据框,但我想将它们连接在一起,这就是问题所在:for column in original_data[ma_columns]:    MA_data = pd.DataFrame(original_data[column].rolling(window=7).mean())    for i in MA_data:        new = pd.concat(i)        print(i)<ipython-input-75-7c5e5fa775b3> in <module>     17 #     print(type(MA_data))     18     for i in MA_data:---> 19         new = pd.concat(i)     20         print(i)     21 ~\Anaconda3\lib\site-packages\pandas\core\reshape\concat.py in concat(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)    279         verify_integrity=verify_integrity,    280         copy=copy,--> 281         sort=sort,    282     )    283 ~\Anaconda3\lib\site-packages\pandas\core\reshape\concat.py in __init__(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)    307                 "first argument must be an iterable of pandas "    308                 "objects, you passed an object of type "--> 309                 '"{name}"'.format(name=type(objs).__name__)    310             )    311 TypeError: first argument must be an iterable of pandas objects, you passed an object of type "str"
查看完整描述

1 回答

?
FFIVE

TA贡献1797条经验 获得超6个赞

您应该遍历列名并将生成的 pandas 系列分配为新的命名列,例如:


import pandas as pd


original_data = pd.DataFrame({'A': range(100), 'B': range(100, 200)})


ma_columns = ['A', 'B']


for column in ma_columns:

    new_column = column + '_ma'

    original_data[new_column] = pd.DataFrame(original_data[column].rolling(window=7).mean())


print(original_data)

输出数据帧:


    A    B  A_ma   B_ma

0    0  100   NaN    NaN

1    1  101   NaN    NaN

2    2  102   NaN    NaN

3    3  103   NaN    NaN

4    4  104   NaN    NaN

..  ..  ...   ...    ...

95  95  195  92.0  192.0

96  96  196  93.0  193.0

97  97  197  94.0  194.0

98  98  198  95.0  195.0

99  99  199  96.0  196.0


[100 rows x 4 columns]


查看完整回答
反对 回复 2023-06-20
  • 1 回答
  • 0 关注
  • 133 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信