1 回答

TA贡献2016条经验 获得超9个赞
为了获得最佳性能,我将在此示例中使用 Numba。我还添加了来自 Divakars 链接答案的 2 种方法以进行比较。
代码
import numpy as np
import numba as nb
from scipy.spatial.distance import cdist
@nb.njit(fastmath=True,parallel=True,cache=True)
def dist_1(mat,vec):
res=np.empty(mat.shape[0],dtype=mat.dtype)
for i in nb.prange(mat.shape[0]):
acc=0
for j in range(mat.shape[1]):
acc+=(mat[i,j]-vec[j])**2
res[i]=np.sqrt(acc)
return res
#from https://stackoverflow.com/a/52364284/4045774
def dist_2(mat,vec):
return cdist(mat, np.atleast_2d(vec)).ravel()
#from https://stackoverflow.com/a/52364284/4045774
def dist_3(mat,vec):
M = mat.dot(vec)
d = np.einsum('ij,ij->i',mat,mat) + np.inner(vec,vec) -2*M
return np.sqrt(d)
时序
#Float64
a = np.random.rand(4000000, 128)
b = np.random.rand(128)
%timeit dist_1(a,b)
#122 ms ± 3.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dist_2(a,b)
#484 ms ± 3.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dist_3(a,b)
#432 ms ± 14.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#Float32
a = np.random.rand(4000000, 128).astype(np.float32)
b = np.random.rand(128).astype(np.float32)
%timeit dist_1(a,b)
#68.6 ms ± 414 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dist_2(a,b)
#2.2 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#looks like there is a costly type-casting to float64
%timeit dist_3(a,b)
#228 ms ± 8.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
添加回答
举报