为了账号安全,请及时绑定邮箱和手机立即绑定

将最后一层(输出层)的权重从经过训练的网络加载到新模型

将最后一层(输出层)的权重从经过训练的网络加载到新模型

繁星淼淼 2023-06-06 14:56:29
是否可以使用 set_weights 和 get_weights 方案将权重从经过训练的网络加载到我的新模型的最后一层?关键是,我将每一层的权重保存为一个 mat 文件(训练后),以便在 Matlab 中进行一些计算,我只想将最后一层的修改权重加载到我的新模型和其他层的最后一层获得与训练模型相同的权重。这有点棘手,因为保存的格式是 mat。weights1 = lstm_model1.layers[0].get_weights()[0]biases1 = lstm_model1.layers[0].get_weights()[1]weights2 = lstm_model1.layers[2].get_weights()[0]biases2 = lstm_model1.layers[2].get_weights()[1]weights3 = lstm_model1.layers[4].get_weights()[0]biases3 = lstm_model1.layers[4].get_weights()[1]# Save the weights and biases for adaptation algorithm savemat("weights1.mat", mdict={'weights1': weights1})  savemat("biases1.mat", mdict={'biases1': biases1})      savemat("weights2.mat", mdict={'weights2': weights2})   savemat("biases2.mat", mdict={'biases2': biases2})      savemat("weights3.mat", mdict={'weights3': weights3}) savemat("biases3.mat", mdict={'biases3': biases3})  我如何才能将其他层的旧权重加载到新模型(没有最后一层)并将最后一层的修改权重加载到新模型的最后一层?
查看完整描述

1 回答

?
饮歌长啸

TA贡献1951条经验 获得超3个赞

如果将其另存为 .h5 文件格式,则可以正常工作。但是,我不确定 .mat:


简单来说,您只需调用get_weights所需的层,类似地,set_weights调用另一个模型的相应层:


last_layer_weights = old_model.layers[-1].get_weights()

new_model.layers[-1].set_weights(last_layer_weights)

如需更完整的代码示例,请点击此处:


# Create an arbitrary model with some weights, for example

model = Sequential(layers = [

    Dense(70, input_shape = (100,)),

    Dense(60),

    Dense(50),

    Dense(5)])


# Save the weights of the model

model.save_weights(“model.h5”)


# Later, load in the model (we only really need the layer in question)

old_model = Sequential(layers = [

    Dense(70, input_shape = (100,)),

    Dense(60),

    Dense(50),

    Dense(5)])


old_model.load_weights(“model.h5”)


# Create a new model with slightly different architecture (except for the layer in question, at least)

new_model = Sequential(layers = [

    Dense(80, input_shape = (100,)),

    Dense(60),

    Dense(50),

    Dense(5)])


# Set the weights of the final layer of the new model to the weights of the final layer of the old model, but leaving other layers unchanged.

new_model.layers[-1].set_weights(old_model.layers[-1].get_weights())


# Assert that the weights of the final layer is the same, but other are not.

print (np.all(new_model.layers[-1].get_weights()[0] == old_model.layers[-1].get_weights()[0]))

>> True


print (np.all(new_model.layers[-2].get_weights()[0] == old_model.layers[-2].get_weights()[0]))

>> False


查看完整回答
反对 回复 2023-06-06
  • 1 回答
  • 0 关注
  • 103 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信