为了账号安全,请及时绑定邮箱和手机立即绑定

如何在 python 中实现 EM-GMM?

如何在 python 中实现 EM-GMM?

森栏 2023-05-23 14:53:00
如下所示:import numpy as npdef PDF(data, means, variances):    return 1/(np.sqrt(2 * np.pi * variances) + eps) * np.exp(-1/2 * (np.square(data - means) / (variances + eps)))def EM_GMM(data, k, iterations):    weights = np.ones((k, 1)) / k # shape=(k, 1)    means = np.random.choice(data, k)[:, np.newaxis] # shape=(k, 1)    variances = np.random.random_sample(size=k)[:, np.newaxis] # shape=(k, 1)    data = np.repeat(data[np.newaxis, :], k, 0) # shape=(k, n)    for step in range(iterations):        # Expectation step        likelihood = PDF(data, means, np.sqrt(variances)) # shape=(k, n)        # Maximization step        b = likelihood * weights # shape=(k, n)        b /= np.sum(b, axis=1)[:, np.newaxis] + eps        # updage means, variances, and weights        means = np.sum(b * data, axis=1)[:, np.newaxis] / (np.sum(b, axis=1)[:, np.newaxis] + eps)        variances = np.sum(b * np.square(data - means), axis=1)[:, np.newaxis] / (np.sum(b, axis=1)[:, np.newaxis] + eps)        weights = np.mean(b, axis=1)[:, np.newaxis]            return means, variances我认为这是错误的,因为输出是两个向量,其中一个代表means值,另一个代表variances值。让我对实现产生怀疑的模糊点是它返回0.00000000e+000大部分可以看到的输出,并且不需要真正可视化这些输出。顺便说一句,输入数据是时间序列数据。我已经检查了所有内容并进行了多次跟踪,但没有出现错误。
查看完整描述

2 回答

?
心有法竹

TA贡献1866条经验 获得超5个赞

我看到的关键点是means初始化。按照sklearn Gaussian Mixture的默认实现,我切换到 KMeans,而不是随机初始化。

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

plt.style.use('seaborn')


eps=1e-8 


def PDF(data, means, variances):

    return 1/(np.sqrt(2 * np.pi * variances) + eps) * np.exp(-1/2 * (np.square(data - means) / (variances + eps)))


def EM_GMM(data, k=3, iterations=100, init_strategy='kmeans'):

    weights = np.ones((k, 1)) / k # shape=(k, 1)

    

    if init_strategy=='kmeans':

        from sklearn.cluster import KMeans

        

        km = KMeans(k).fit(data[:, None])

        means = km.cluster_centers_ # shape=(k, 1)

        

    else: # init_strategy=='random'

        means = np.random.choice(data, k)[:, np.newaxis] # shape=(k, 1)

    

    variances = np.random.random_sample(size=k)[:, np.newaxis] # shape=(k, 1)


    data = np.repeat(data[np.newaxis, :], k, 0) # shape=(k, n)


    for step in range(iterations):

        # Expectation step

        likelihood = PDF(data, means, np.sqrt(variances)) # shape=(k, n)


        # Maximization step

        b = likelihood * weights # shape=(k, n)

        b /= np.sum(b, axis=1)[:, np.newaxis] + eps


        # updage means, variances, and weights

        means = np.sum(b * data, axis=1)[:, np.newaxis] / (np.sum(b, axis=1)[:, np.newaxis] + eps)

        variances = np.sum(b * np.square(data - means), axis=1)[:, np.newaxis] / (np.sum(b, axis=1)[:, np.newaxis] + eps)

        weights = np.mean(b, axis=1)[:, np.newaxis]

        

    return means, variances

这似乎更一致地产生所需的输出:


s = np.array([25.31      , 24.31      , 24.12      , 43.46      , 41.48666667,

              41.48666667, 37.54      , 41.175     , 44.81      , 44.44571429,

              44.44571429, 44.44571429, 44.44571429, 44.44571429, 44.44571429,

              44.44571429, 44.44571429, 44.44571429, 44.44571429, 44.44571429,

              44.44571429, 44.44571429, 39.71      , 26.69      , 34.15      ,

              24.94      , 24.75      , 24.56      , 24.38      , 35.25      ,

              44.62      , 44.94      , 44.815     , 44.69      , 42.31      ,

              40.81      , 44.38      , 44.56      , 44.44      , 44.25      ,

              43.66666667, 43.66666667, 43.66666667, 43.66666667, 43.66666667,

              40.75      , 32.31      , 36.08      , 30.135     , 24.19      ])

k=3

n_iter=100


means, variances = EM_GMM(s, k, n_iter)

print(means,variances)

[[44.42596231]

 [24.509301  ]

 [35.4137508 ]] 

[[0.07568723]

 [0.10583743]

 [0.52125856]]


# Plotting the results

colors = ['green', 'red', 'blue', 'yellow']

bins = np.linspace(np.min(s)-2, np.max(s)+2, 100)


plt.figure(figsize=(10,7))

plt.xlabel('$x$')

plt.ylabel('pdf')


sns.scatterplot(s, [0.05] * len(s), color='navy', s=40, marker=2, label='Series data')


for i, (m, v) in enumerate(zip(means, variances)):

    sns.lineplot(bins, PDF(bins, m, v), color=colors[i], label=f'Cluster {i+1}')


plt.legend()

plt.plot()

//img1.sycdn.imooc.com/646c63170001c9ba06070419.jpg

最后我们可以看到纯随机初始化产生了不同的结果;让我们看看结果means:


for _ in range(5):

    print(EM_GMM(s, k, n_iter, init_strategy='random')[0], '\n')


[[44.42596231]

 [44.42596231]

 [44.42596231]]


[[44.42596231]

 [24.509301  ]

 [30.1349997 ]]


[[44.42596231]

 [35.4137508 ]

 [44.42596231]]


[[44.42596231]

 [30.1349997 ]

 [44.42596231]]


[[44.42596231]

 [44.42596231]

 [44.42596231]]

可以看出这些结果有多么不同,在某些情况下,结果均值是恒定的,这意味着初始化选择了 3 个相似的值并且在迭代时没有太大变化。在 中添加一些打印语句EM_GMM将澄清这一点。


查看完整回答
反对 回复 2023-05-23
?
一只萌萌小番薯

TA贡献1795条经验 获得超7个赞

# Expectation step

likelihood = PDF(data, means, np.sqrt(variances))

我们为什么要sqrt过去variances?pdf 函数接受差异。所以这应该是PDF(data, means, variances)。

另一个问题,


# Maximization step

b = likelihood * weights # shape=(k, n)

b /= np.sum(b, axis=1)[:, np.newaxis] + eps

上面第二行应该是b /= np.sum(b, axis=0)[:, np.newaxis] + eps

同样在 的初始化中variances,


variances = np.random.random_sample(size=k)[:, np.newaxis] # shape=(k, 1)

为什么我们要随机初始化方差?我们有data和means,为什么不像 中那样计算当前估计方差vars = np.expand_dims(np.mean(np.square(data - means), axis=1), -1)?

通过这些更改,这是我的实现,


import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

plt.style.use('seaborn')


eps=1e-8



def pdf(data, means, vars):

    denom = np.sqrt(2 * np.pi * vars) + eps

    numer = np.exp(-0.5 * np.square(data - means) / (vars + eps))

    return numer /denom



def em_gmm(data, k, n_iter, init_strategy='k_means'):

    weights = np.ones((k, 1), dtype=np.float32) / k

    if init_strategy == 'k_means':

        from sklearn.cluster import KMeans

        km = KMeans(k).fit(data[:, None])

        means = km.cluster_centers_

    else:

        means = np.random.choice(data, k)[:, np.newaxis]

    data = np.repeat(data[np.newaxis, :], k, 0)

    vars = np.expand_dims(np.mean(np.square(data - means), axis=1), -1)

    for step in range(n_iter):

        p = pdf(data, means, vars)

        b = p * weights

        denom = np.expand_dims(np.sum(b, axis=0), 0) + eps

        b = b / denom

        means_n = np.sum(b * data, axis=1)

        means_d = np.sum(b, axis=1) + eps

        means = np.expand_dims(means_n / means_d, -1)

        vars = np.sum(b * np.square(data - means), axis=1) / means_d

        vars = np.expand_dims(vars, -1)

        weights = np.expand_dims(np.mean(b, axis=1), -1)


    return means, vars



def main():

    s = np.array([25.31, 24.31, 24.12, 43.46, 41.48666667,

                  41.48666667, 37.54, 41.175, 44.81, 44.44571429,

                  44.44571429, 44.44571429, 44.44571429, 44.44571429, 44.44571429,

                  44.44571429, 44.44571429, 44.44571429, 44.44571429, 44.44571429,

                  44.44571429, 44.44571429, 39.71, 26.69, 34.15,

                  24.94, 24.75, 24.56, 24.38, 35.25,

                  44.62, 44.94, 44.815, 44.69, 42.31,

                  40.81, 44.38, 44.56, 44.44, 44.25,

                  43.66666667, 43.66666667, 43.66666667, 43.66666667, 43.66666667,

                  40.75, 32.31, 36.08, 30.135, 24.19])

    k = 3

    n_iter = 100


    means, vars = em_gmm(s, k, n_iter)

    y = 0

    colors = ['green', 'red', 'blue', 'yellow']

    bins = np.linspace(np.min(s) - 2, np.max(s) + 2, 100)

    plt.figure(figsize=(10, 7))

    plt.xlabel('$x$')

    plt.ylabel('pdf')

    sns.scatterplot(s, [0.0] * len(s), color='navy', s=40, marker=2, label='Series data')

    for i, (m, v) in enumerate(zip(means, vars)):

        sns.lineplot(bins, pdf(bins, m, v), color=colors[i], label=f'Cluster {i + 1}')

    plt.legend()

    plt.plot()


    plt.show()

    pass

这是我的结果。

//img1.sycdn.imooc.com//646c633100012b5106580449.jpg

查看完整回答
反对 回复 2023-05-23
  • 2 回答
  • 0 关注
  • 152 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信