1 回答
TA贡献1804条经验 获得超8个赞
这是一个动态规划问题。它们可以通过两种基本方式解决。一种是写一个递归函数,然后memoize。另一种是自底向上构建数据结构。
自上而下的方法通常更容易编写。自下而上的方法通常更有效。这就是为什么两者都要学习的原因。
我将在 Python 中演示自上而下的方法。
考虑以下功能:
def best_k_match_ending_at(string1, string2, k, i, j):
if string1[i] != string2[j]:
return (0, None, None)
else:
best = (0, None, None)
for i_old in range(max(i-k, 0), i):
for j_old in range(max(j-k, 0), j):
this = best_k_match_ending_at(string1, string2, k, i_old, j_old)
best = max(best, this)
return (best[0] + 1, (i, best[1]), (j, best[2]))
def best_k_match(string1, string2, k):
best = (0, None, None)
for i in range(len(string1)):
for j in range(len(string2)):
best = max(best, best_k_match_ending_at(string1, string2, k, i, j))
return best
# prints (5, (5, (4, (3, (2, (1, None))))), (6, (5, (4, (3, (2, None)))))
print(best_k_match('carpani', 'blarpan sharlie paneaui', 3))
这是非常低效的。但正确。现在记忆它之前的一步。我喜欢重构以将辅助函数移动到主函数中。逻辑是一样的,但是当我记忆时,它会告诉我何时处理完数据。
def best_k_match(string1, string2, k):
def best_ending_at(i, j):
if string1[i] != string2[j]:
return (0, None, None)
else:
best = (0, None, None)
for i_old in range(max(i-k, 0), i):
for j_old in range(max(j-k, 0), j):
this = best_ending_at(i_old, j_old)
best = max(best, this)
return (best[0] + 1, (i, best[1]), (j, best[2]))
best = (0, None, None)
for i in range(len(string1)):
for j in range(len(string2)):
best = max(best, best_ending_at(i, j))
return best
print(best_k_match('carpani', 'blarpan sharlie paneaui', 3))
现在我记住了
def best_k_match(string1, string2, k):
memoized = {}
def best_ending_at(i, j):
if string1[i] != string2[j]:
return (0, None, None)
elif (i, j) not in memoized:
best = (0, None, None)
for i_old in range(max(i-k, 0), i):
for j_old in range(max(j-k, 0), j):
this = best_ending_at(i_old, j_old)
best = max(best, this)
memoized[(i, j)] = (best[0] + 1, (i, best[1]), (j, best[2]))
return memoized[(i, j)]
best = (0, None, None)
for i in range(len(string1)):
for j in range(len(string2)):
best = max(best, best_ending_at(i, j))
return best
print(best_k_match('carpani', 'blarpan sharlie paneaui', 3))
现在这很有效,但您可能不太喜欢输出。因为它是一个倒序的链表。这是一个更好的输出。
def best_k_match(string1, string2, k):
memoized = {}
def best_ending_at(i, j):
if string1[i] != string2[j]:
return (0, None, None)
elif (i, j) not in memoized:
best = (0, None, None)
for i_old in range(max(i-k, 0), i):
for j_old in range(max(j-k, 0), j):
this = best_ending_at(i_old, j_old)
best = max(best, this)
memoized[(i, j)] = (best[0] + 1, (i, best[1]), (j, best[2]))
return memoized[(i, j)]
best = (0, None, None)
for i in range(len(string1)):
for j in range(len(string2)):
best = max(best, best_ending_at(i, j))
# Turn linked lists to something nicer.
best_seq_rev = []
best_match_rev = []
best_link_1 = best[1]
best_link_2 = best[2]
while best_link_1 is not None:
best_seq_rev.append(string1[best_link_1[0]])
best_match_rev.append((best_link_1[0], best_link_2[0]))
best_link_1 = best_link_1[1]
best_link_2 = best_link_2[1]
best_seq = "".join(reversed(best_seq_rev))
best_match = list(reversed(best_match_rev))
return (best[0], best_seq, best_match)
# prints (5, 'arpan', [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)])
print(best_k_match('carpani', 'blarpan sharlie paneaui', 3))
如果字符串的长度为n和m,则为O(n*m*k^2)。
添加回答
举报