2 回答

TA贡献1866条经验 获得超5个赞
你没有理由使用 2D 卷积层,因为你的数据是 3D 的。您正在寻找的是 Conv1D。另外,不要n_samples在input_shape.
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv1D, Flatten
from tensorflow.keras import optimizers
import numpy as np
data = np.random.rand(1000,22)
train_X = data[0:data.shape[0],0:12]
train_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))
train_y = data[0:data.shape[0],12:data.shape[1]]
neurons = 10
model = Sequential()
model.add(Conv1D(filters=64,input_shape=train_X.shape[1:],
activation='relu',kernel_size = 3))
model.add(Flatten())
model.add(Dense(neurons,activation='relu')) # first hidden layer
model.add(Dense(10, activation='softmax'))
sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
history = model.fit(train_X, train_y, validation_split=0.2, epochs=1, batch_size=100)
Train on 800 samples, validate on 200 samples
100/800 [==>...........................] - ETA: 2s - loss: 11.4786 - acc: 0.0800
800/800 [==============================] - 0s 547us/sample - loss: 55.3883 - acc: 0.1000

TA贡献1876条经验 获得超6个赞
你需要train_X
有第四维度。就像错误信息所说的那样。
train_X = train_X.reshape(train_X.shape[0], train_X.shape[1], 1, 1)
添加回答
举报