2 回答
TA贡献1809条经验 获得超8个赞
生成的协议缓冲区文件tf.saved_model.save
不包含GraphDef
消息,而是包含一个SavedModel
. 您可以在 Python 中遍历它SavedModel
以获取其中的嵌入图,但这不会立即用作冻结图,因此正确处理它可能很困难。取而代之的是,C++ API 现在包含一个LoadSavedModel
调用,允许您从目录加载整个保存的模型。它应该看起来像这样:
#include <iostream>
#include <...> // Add necessary TF include directives
using namespace std;
using namespace tensorflow;
int main()
{
// Path to saved model directory
const string export_dir = "...";
// Load model
Status s;
SavedModelBundle bundle;
SessionOptions session_options;
RunOptions run_options;
s = LoadSavedModel(session_options, run_options, export_dir,
// default "serve" tag set by tf.saved_model.save
{"serve"}, &bundle));
if (!.ok())
{
cerr << "Could not load model: " << s.error_message() << endl;
return -1;
}
// Model is loaded
// ...
return 0;
}
从这里开始,您可以做不同的事情。也许您最愿意使用 将保存的模型转换为冻结图FreezeSavedModel,这应该让您可以像以前一样做事:
GraphDef frozen_graph_def;
std::unordered_set<string> inputs;
std::unordered_set<string> outputs;
s = FreezeSavedModel(bundle, &frozen_graph_def,
&inputs, &outputs));
if (!s.ok())
{
cerr << "Could not freeze model: " << s.error_message() << endl;
return -1;
}
否则,您可以直接使用保存的模型对象:
// Default "serving_default" signature name set by tf.saved_model_save
const SignatureDef& signature_def = bundle.GetSignatures().at("serving_default");
// Get input and output names (different from layer names)
// Key is input and output layer names
const string input_name = signature_def.inputs().at("my_input").name();
const string output_name = signature_def.inputs().at("my_output").name();
// Run model
Tensor input = ...;
std::vector<Tensor> outputs;
s = bundle.session->Run({{input_name, input}}, {output_name}, {}, &outputs));
if (!s.ok())
{
cerr << "Error running model: " << s.error_message() << endl;
return -1;
}
// Get result
Tensor& output = outputs[0];
TA贡献2021条经验 获得超8个赞
我找到了以下问题的解决方案:
g = tf.Graph()
with g.as_default():
# Create model
inputs = tf.keras.Input(...)
x = tf.keras.layers.Conv2D(1, (1,1), padding='same')(inputs)
# Done creating model
# Optionally get graph operations
ops = g.get_operations()
for op in ops:
print(op.name, op.type)
# Save graph
tf.io.write_graph(g.as_graph_def(), 'path', 'filename.pb', as_text=False)
添加回答
举报