4 回答
TA贡献1816条经验 获得超4个赞
您可以使用np.vectorize将字典值映射到数组
In [6]: b_dict = { 1:10., 2:20., 3:30 }
In [7]: a = np.full( 10, 2 )
In [8]: np.vectorize(b_dict.get)(a)
Out[8]: array([20., 20., 20., 20., 20., 20., 20., 20., 20., 20.])
TA贡献1876条经验 获得超5个赞
解决问题的另一种方法:
from operator import itemgetter
np.array(itemgetter(*a)(b_dict))
输出:
[20., 20., 20., 20., 20., 20., 20., 20., 20., 20.]
比较:
#@kmundnic solution
def m1(a):
def get_b(x):
b_dict = { 1:10., 2:20., 3:30. }
return b_dict[x]
return np.fromiter(map(get_b, a),dtype=np.float)
#@bigbounty solution
def m2(a):
b_dict = { 1:10., 2:20., 3:30. }
return np.vectorize(b_dict.get)(a)
#@Ehsan solution
def m3(a):
b_dict = { 1:10., 2:20., 3:30. }
return np.array(itemgetter(*a)(b_dict))
#@Sun Bear solution
def m4(a):
def get_b( a ):
b_dict = { 1:10., 2:20., 3:30. }
return b_dict[ a ]
return np.array( [get_b(i) for i in a] )
in_ = [np.full( n, 2 ) for n in [10,100,1000,10000]]
对于small dictionary,似乎m2在大输入时最快,而m3在小输入时最快。
对于更大的字典:
b_dict = dict(zip(np.arange(100),np.arange(100)))
in_ = [np.full(n,50) for n in [10,100,1000,10000]]
m3是最快的方法。您可以根据您的字典大小和键数组大小进行选择。
TA贡献1793条经验 获得超6个赞
map使用and怎么样np.fromiter?
def get_b( a ):
b_dict = { 1:10., 2:20., 3:30. }
return b_dict[ a ]
a = np.full( 10, 2 )
b = np.fromiter(map(get_b, a), dtype=np.float64)
编辑 1:小时间比较:
%timeit np.array( [get_b(i) for i in a] )
5.58 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit np.fromiter(map(get_b, a), dtype=np.float64)
5.77 µs ± 177 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit np.vectorize(b_dict.get)(a)
12.9 µs ± 76.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
编辑 2:好像那个例子太小了:
a = np.full( 1000, 2 )
%timeit np.array( [get_b(i) for i in a] )
415 µs ± 9.13 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.fromiter(map(get_b, a), dtype=np.float64)
383 µs ± 2.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.vectorize(b_dict.get)(a)
68.6 µs ± 625 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
TA贡献1111条经验 获得超0个赞
必须b_dict
是字典吗?如果你有一个数组,例如。ref = np.array([0, 10,20,30])
您可以按索引快速选择值, ref[a]
。在使用 numpy 时,我会尽量避免使用 dict。
我发现使用 NumPy 的索引会使性能比尝试使用 python 快几个到几个数量级dict
。下面是一个进行此类比较的脚本。
import numpy as np
from operator import itemgetter
import timeit
import matplotlib.pyplot as plt
#@kmundnic solution
def m1(a):
def get_b(x):
b = { 1:10., 2:20., 3:30. }
#b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
return b[x]
return np.fromiter(map(get_b, a),dtype=np.float)
#@bigbounty solution
def m2(a):
b = { 1:10., 2:20., 3:30. }
#b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
return np.vectorize(b.get)(a)
#@Ehsan solution
def m3(a):
b = { 1:10., 2:20., 3:30. }
#b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
return np.array(itemgetter(*a)(b))
#@Sun Bear solution
def m4(a):
def get_b( a ):
b = { 1:10., 2:20., 3:30. }
#b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )
return b[ a ]
return np.array( [get_b(i) for i in a] )
#@hpaulj solution
def m5(a):
b = np.array([10, 20, 30])
#b = np.arange(10,1001,10)
return b[a]
sizes=[10,100,1000,10000]
pm1 = []
pm2 = []
pm3 = []
pm4 = []
pm5 = []
for size in sizes:
a = np.full( size, 2 )
pm1.append( timeit.timeit( 'm1(a)', number=1000, globals=globals() ) )
pm2.append( timeit.timeit( 'm2(a)', number=1000, globals=globals() ) )
pm3.append( timeit.timeit( 'm3(a)', number=1000, globals=globals() ) )
pm4.append( timeit.timeit( 'm4(a)', number=1000, globals=globals() ) )
pm5.append( timeit.timeit( 'm5(a)', number=1000, globals=globals() ) )
print( 'm1 slower than m5 by :',np.array(pm1) / np.array(pm5) )
print( 'm2 slower than m5 by :',np.array(pm2) / np.array(pm5) )
print( 'm3 slower than m5 by :',np.array(pm3) / np.array(pm5) )
print( 'm4 slower than m5 by :',np.array(pm4) / np.array(pm5) )
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot( sizes, pm1, label='m1' )
ax.plot( sizes, pm2, label='m2' )
ax.plot( sizes, pm3, label='m3' )
ax.plot( sizes, pm4, label='m4' )
ax.plot( sizes, pm5, label='m5' )
ax.grid( which='both' )
ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
ax.get_xaxis().set_label_text( label='len(a)', fontweight='bold' )
ax.get_yaxis().set_label_text( label='Runtime (sec)', fontweight='bold' )
plt.show()
结果:
长度 (b) = 3:
m1 slower than m5 by : [ 4.22462367 29.79407905 85.03454097 339.2915358 ]
m2 slower than m5 by : [ 8.64220685 11.57175871 13.76761749 46.1940683 ]
m3 slower than m5 by : [ 3.25785432 21.63131578 54.71305704 220.15777696 ]
m4 slower than m5 by : [ 4.60710166 30.93616607 91.8936744 371.00398273 ]
长度 (b) = 100:
m1 slower than m5 by : [ 218.98603678 1976.50128737 9697.76615006 17742.79151719 ]
m2 slower than m5 by : [ 41.76535891 53.85600913 109.35129345 164.13075291 ]
m3 slower than m5 by : [ 24.82715462 36.77830986 87.56253196 141.04493237 ]
m4 slower than m5 by : [ 222.04184193 2001.72120836 9775.22464369 18431.00155305 ]
添加回答
举报