为了账号安全,请及时绑定邮箱和手机立即绑定

如何基于另一个 NumPy 数组的值创建一个 NumPy 数组?

如何基于另一个 NumPy 数组的值创建一个 NumPy 数组?

陪伴而非守候 2023-04-11 16:00:48
我想创建一个 NumPy 数组。它的元素值取决于另一个 NumPy 数组中元素的值。目前,我必须在列表理解中使用 for 循环来遍历数组a以获取b. NumPy 实现这一目标的方法是什么?测试脚本:import numpy as npdef get_b( a ):    b_dict = {  1:10., 2:20., 3:30. }    return b_dict[ a ]a = np.full( 10, 2 )print( f'a = {a}' )b = np.array( [get_b(i) for i in a] )print( f'b = {b}' )输出:a = [2 2 2 2 2 2 2 2 2 2]b = [20. 20. 20. 20. 20. 20. 20. 20. 20. 20.]
查看完整描述

4 回答

?
繁华开满天机

TA贡献1816条经验 获得超4个赞

您可以使用np.vectorize将字典值映射到数组


In [6]: b_dict = {  1:10., 2:20., 3:30 }


In [7]: a = np.full( 10, 2 )


In [8]: np.vectorize(b_dict.get)(a)

Out[8]: array([20., 20., 20., 20., 20., 20., 20., 20., 20., 20.])


查看完整回答
反对 回复 2023-04-11
?
慕运维8079593

TA贡献1876条经验 获得超5个赞

解决问题的另一种方法:


from operator import itemgetter

np.array(itemgetter(*a)(b_dict))

输出:


[20., 20., 20., 20., 20., 20., 20., 20., 20., 20.]

比较:


#@kmundnic solution

def m1(a):

  def get_b(x):

    b_dict = {  1:10., 2:20., 3:30. }

    return b_dict[x]

  return np.fromiter(map(get_b, a),dtype=np.float)


#@bigbounty solution

def m2(a):

  b_dict = {  1:10., 2:20., 3:30. }

  return np.vectorize(b_dict.get)(a)


#@Ehsan solution

def m3(a):

  b_dict = {  1:10., 2:20., 3:30. }

  return np.array(itemgetter(*a)(b_dict))


#@Sun Bear solution

def m4(a):

  def get_b( a ):

    b_dict = {  1:10., 2:20., 3:30. }

    return b_dict[ a ]

  return np.array( [get_b(i) for i in a] )


in_ = [np.full( n, 2 ) for n in [10,100,1000,10000]]

对于small dictionary,似乎m2在大输入时最快,而m3在小输入时最快。

//img1.sycdn.imooc.com//643513d90001e33d03190210.jpg

对于更大的字典:


b_dict = dict(zip(np.arange(100),np.arange(100)))

in_ = [np.full(n,50) for n in [10,100,1000,10000]]

m3是最快的方法。您可以根据您的字典大小和键数组大小进行选择。

//img1.sycdn.imooc.com//643513e600013d7103180207.jpg

查看完整回答
反对 回复 2023-04-11
?
摇曳的蔷薇

TA贡献1793条经验 获得超6个赞

map使用and怎么样np.fromiter?


def get_b( a ):

    b_dict = {  1:10., 2:20., 3:30. }

    return b_dict[ a ]


a = np.full( 10, 2 )

b = np.fromiter(map(get_b, a), dtype=np.float64)

编辑 1:小时间比较:


%timeit np.array( [get_b(i) for i in a] )

5.58 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)


%timeit np.fromiter(map(get_b, a), dtype=np.float64)

5.77 µs ± 177 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)


%timeit np.vectorize(b_dict.get)(a)

12.9 µs ± 76.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

编辑 2:好像那个例子太小了:


a = np.full( 1000, 2 )


%timeit np.array( [get_b(i) for i in a] )

415 µs ± 9.13 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)


%timeit np.fromiter(map(get_b, a), dtype=np.float64)

383 µs ± 2.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)


%timeit np.vectorize(b_dict.get)(a)

68.6 µs ± 625 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)


查看完整回答
反对 回复 2023-04-11
?
catspeake

TA贡献1111条经验 获得超0个赞

必须b_dict是字典吗?如果你有一个数组,例如。ref = np.array([0, 10,20,30])您可以按索引快速选择值, ref[a]在使用 numpy 时,我会尽量避免使用 dict。

我发现使用 NumPy 的索引会使性能比尝试使用 python 快几个到几个数量级dict。下面是一个进行此类比较的脚本。

import numpy as np

from operator import itemgetter

import timeit

import matplotlib.pyplot as plt



#@kmundnic solution

def m1(a):

    def get_b(x):

        b = {  1:10., 2:20., 3:30. }

        #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )

        return b[x]

    return np.fromiter(map(get_b, a),dtype=np.float)


#@bigbounty solution

def m2(a):

    b = {  1:10., 2:20., 3:30. }

    #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )

    return np.vectorize(b.get)(a)


#@Ehsan solution

def m3(a):

    b = {  1:10., 2:20., 3:30. }

    #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )

    return np.array(itemgetter(*a)(b))


#@Sun Bear solution

def m4(a):

    def get_b( a ):

        b = {  1:10., 2:20., 3:30. }

        #b = dict( zip( np.arange(1,101),np.arange(10,1001,10) ) )

        return b[ a ]

    return np.array( [get_b(i) for i in a] )


#@hpaulj solution

def m5(a):

    b = np.array([10, 20, 30])

    #b = np.arange(10,1001,10) 

    return b[a]


        

sizes=[10,100,1000,10000]

pm1 = []

pm2 = []

pm3 = []

pm4 = []

pm5 = []

for size in sizes:

    a = np.full( size, 2 )

    pm1.append( timeit.timeit( 'm1(a)', number=1000, globals=globals() ) )

    pm2.append( timeit.timeit( 'm2(a)', number=1000, globals=globals() ) )

    pm3.append( timeit.timeit( 'm3(a)', number=1000, globals=globals() ) )

    pm4.append( timeit.timeit( 'm4(a)', number=1000, globals=globals() ) )

    pm5.append( timeit.timeit( 'm5(a)', number=1000, globals=globals() ) )


print( 'm1 slower than m5 by :',np.array(pm1) / np.array(pm5) )

print( 'm2 slower than m5 by :',np.array(pm2) / np.array(pm5) )

print( 'm3 slower than m5 by :',np.array(pm3) / np.array(pm5) )

print( 'm4 slower than m5 by :',np.array(pm4) / np.array(pm5) )


fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot( sizes, pm1, label='m1' )

ax.plot( sizes, pm2, label='m2' )

ax.plot( sizes, pm3, label='m3' )

ax.plot( sizes, pm4, label='m4' )

ax.plot( sizes, pm5, label='m5' )

ax.grid( which='both' )

ax.set_xscale('log')

ax.set_yscale('log')

ax.legend()

ax.get_xaxis().set_label_text( label='len(a)', fontweight='bold' )

ax.get_yaxis().set_label_text( label='Runtime (sec)', fontweight='bold' )

plt.show()

结果:


长度 (b) = 3:


m1 slower than m5 by : [  4.22462367  29.79407905  85.03454097 339.2915358 ]

m2 slower than m5 by : [  8.64220685 11.57175871 13.76761749 46.1940683 ]

m3 slower than m5 by : [  3.25785432  21.63131578  54.71305704 220.15777696 ]

m4 slower than m5 by : [  4.60710166  30.93616607  91.8936744  371.00398273 ]

长度 (b) = 100:


m1 slower than m5 by : [  218.98603678  1976.50128737  9697.76615006 17742.79151719 ]

m2 slower than m5 by : [  41.76535891  53.85600913 109.35129345 164.13075291 ]

m3 slower than m5 by : [  24.82715462  36.77830986  87.56253196 141.04493237 ]

m4 slower than m5 by : [  222.04184193  2001.72120836  9775.22464369 18431.00155305 ]

//img1.sycdn.imooc.com/643514050001ea9106530241.jpg

查看完整回答
反对 回复 2023-04-11
  • 4 回答
  • 0 关注
  • 155 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信