为了账号安全,请及时绑定邮箱和手机立即绑定

使用python循环遍历列表并插入str.contains

使用python循环遍历列表并插入str.contains

Qyouu 2023-03-01 14:56:32
我的目做每一个动作。DataFramedf有几列,但我只想将该函数应用于标题为“条目”的列,该列包含在线扑克桌上发生的所有操作的日志(列中的每一行都是一个字符串)。这是“条目”列的样子(每行都是一个字符串):-- ending hand #174 --"Prof @ ZY_G_5ZOve" gained 100"tom_thumb @ g1PBaozt7k" folds"Prof @ ZY_G_5ZOve" calls with 50"tom_thumb @ g1PBaozt7k" checksriver: 9♦, 5♣, Q♥, 7â™  [Kâ™ ]"Prof @ ZY_G_5ZOve" checks"tom_thumb @ g1PBaozt7k" checksturn: 9♦, 5♣, Q♥ [7â™ ]"Prof @ ZY_G_5ZOve" checks"tom_thumb @ g1PBaozt7k" checksflop:  [9♦, 5♣, Q♥]"Prof @ ZY_G_5ZOve" checks"tom_thumb @ g1PBaozt7k" calls with 50"Bob T. @ fjZTXUGV2G" folds"danny G @ tNE1_lEFYv" folds"Prof @ ZY_G_5ZOve" posts a big blind of 50"tom_thumb @ g1PBaozt7k" posts a small blind of 25-- starting hand #174  (Texas Hold'em) (dealer: "Bob T. @ fjZTXUGV2G") ---- ending hand #173 --"tom_thumb @ g1PBaozt7k" gained 475"danny G @ tNE1_lEFYv" folds"Prof @ ZY_G_5ZOve" folds"tom_thumb @ g1PBaozt7k" raises with 356flop:  [4♥, Aâ™ , 6â™ ]"danny G @ tNE1_lEFYv" calls with 150"Prof @ ZY_G_5ZOve" calls with 150"tom_thumb @ g1PBaozt7k" raises with 150"Bob T. @ fjZTXUGV2G" folds"danny G @ tNE1_lEFYv" calls with 50"Prof @ ZY_G_5ZOve" calls with 50"tom_thumb @ g1PBaozt7k" posts a big blind of 50"Bob T. @ fjZTXUGV2G" posts a small blind of 25-- starting hand #173  (Texas Hold'em) (dealer: "danny G @ tNE1_lEFYv") --这是我尝试过的一些示例代码:player_list = ['danny G', 'Jane', 'Prof', 'spn', 'tim', 'Bob T.', 'joon', 'tom_thumb']action_list = ['call', 'fold']def action_amount(df, player_list, action):    for player in player_list:        action_number =len(df[df['entry'].str.contains('(player).*(action)', regex=True)])        print(f'{player} {action}ed {action_number} times.')action_amount(df, player_list, 'call')值得注意的是,len(df[df['entry'].str.contains('(danny G).*(call)', regex=True)])返回正确的值(我正在使用正则表达式,因为我要查找的两个词在同一行中,中间有一堆不同的字符)。该问题似乎与尝试将值循环到str.contains. 我如何遍历列表并打印姓名以及该人执行给定输入操作的次数?理想情况下,我希望同时遍历代码顶部的两个列表。
查看完整描述

1 回答

?
慕码人8056858

TA贡献1803条经验 获得超6个赞

这行得通吗?


def action_amount(df, player_list, action_list):

    for player in player_list:

        for action in action_list:

            pattern = f'{player}.*{action}'

            matching_rows = df[df['entry'].str.contains(pattern, regex=True)]

            action_number = len(matching_rows)

            print(f'{player} {action}ed {action_number} times.')


action_amount(df, player_list, possible_actions)


查看完整回答
反对 回复 2023-03-01
  • 1 回答
  • 0 关注
  • 184 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信