2 回答
TA贡献1824条经验 获得超8个赞
将从 CSV 中提取的数据帧附加到由雪花模式组成的数据库:
从雪花模式中提取数据。
从外部数据源中提取新数据。
合并两个数据集。
将组合转换为一组维度表和事实表以匹配雪花模式。
将转换后的数据帧加载到数据库中,覆盖现有数据。
例如,对于具有以下模式的数据框,从外部源中提取:
StructType([StructField('customer_name', StringType()),
StructField('campaign_name', StringType())])
def entrypoint(spark: SparkSession) -> None:
extracted_customer_campaigns = extract_from_external_source(spark)
existing_customers_dim, existing_campaigns_dim, existing_facts = (
extract_from_snowflake(spark))
combined_customer_campaigns = combine(existing_campaigns_dim,
existing_customers_dim,
existing_facts,
extracted_customer_campaigns)
new_campaigns_dim, new_customers_dim, new_facts = transform_to_snowflake(
combined_customer_campaigns)
load_snowflake(new_campaigns_dim, new_customers_dim, new_facts)
def combine(campaigns_dimension: DataFrame,
customers_dimension: DataFrame,
facts: DataFrame,
extracted_customer_campaigns: DataFrame) -> DataFrame:
existing_customer_campaigns = facts.join(
customers_dimension,
on=['customer_id']).join(
campaigns_dimension, on=['campaign_id']).select('customer_name',
'campaign_name')
combined_customer_campaigns = extracted_customer_campaigns.union(
existing_customer_campaigns).distinct()
return combined_customer_campaigns
def transform_to_snowflake(customer_campaigns: DataFrame) -> (
DataFrame, DataFrame):
customers_dim = customer_campaigns.select(
'customer_name').distinct().withColumn(
'customer_id', monotonically_increasing_id())
campaigns_dim = customer_campaigns.select(
'campaign_name').distinct().withColumn(
'campaign_id', monotonically_increasing_id())
facts = (
customer_campaigns.join(customers_dim,
on=['customer_name']).join(
campaigns_dim, on=[
'campaign_name']).select('customer_id', 'campaign_id'))
return campaigns_dim, customers_dim, facts
这是一种简单的功能方法。也许可以通过编写增量来优化,而不是为每个 ETL 批次重新生成雪花键。
此外,如果提供了一个单独的外部 CSV 包含要删除的记录,则可以类似地提取它,然后在转换之前从组合数据框中减去,以删除那些现有记录。
最后,问题仅涉及附加到表格。如果需要合并/更新插入,则需要手动添加其他步骤,因为Spark 本身不支持它。
TA贡献1826条经验 获得超6个赞
你可以像我在下面的代码中描述的那样做一些事情。我假设您的 csv 具有与 df4 上定义的类似结构。但我认为您可能没有 customer_id、product_id 及其组的 ID。如果是这种情况,您可以使用该 row_number 窗口函数(具有序列号)来计算它们,或者使用如图所示的 monotonically_increasing_id 函数来创建 df5
这个解决方案主要是基于PySpark和SQL,所以如果你对传统的DW比较熟悉,就会更好理解。
from pyspark.sql.functions import monotonically_increasing_id
#Creates input data. Only to rows to show how it should work
#The schema is defined on the single dataframe as
# customer_id --> business key coming from transactional system
# customer_name --> just an attribute to show how it should behave
# customer_group_id --> an id that would match the group_id on the snowflake schema, as the idea is to group customers on groups (just as a sample)
# product_id --> another future dimension on the model having a snowflake schema
# product_group_id --> group id for products to group them on categories
df1 = spark.sql("""select 1 customer_id, 'test1' customer_name, 1 customer_group_id, 'group 1' customer_group_name,
1 product_id, 'product 1' product_name, 1 product_group_id, 'product group 1' product_group_name,
987.5 sales
""")
df2 = spark.sql("""select 2 customer_id, 'test2' customer_name, 1 customer_group_id, 'group 1' customer_group_name,
7 product_id, 'product 7' product_name, 1 product_group_id, 'product group 1' product_group_name,
12345.5 sales
""")
df3 = spark.sql("""select 2 customer_id, 'test2' customer_name, 1 customer_group_id, 'group 1' customer_group_name,
1 product_id, 'product 1' product_name, 1 product_group_id, 'product group 1' product_group_name,
2387.3 sales
""")
df4 = df1.union(df2).union(df3)
# Added an id on the df to be able to calculate the rest of the surrogate keys for dimensions
df5 = df4.withColumn("id", monotonically_increasing_id())
# Registered dataframe to be able to query using SQL
df5.createOrReplaceTempView("df")
# Now create different dfs as the structure of the DW schema is
customer_group_df = spark.sql("""select customer_group_id, customer_group_name
from df group by customer_group_id, customer_group_name""")
# I use the row_number because the monotonically increasing id function
# returns non sequential integers, but if you are good with that, it will be much faster
# Also another solution could be to use uuid as key (or other unique identifier providers)
# but that will depend on your requirements
customer_df = spark.sql("""select row_number() over (order by customer_id, customer_name, customer_group_id) as surkey_customer, customer_id customer_bk,
customer_name, customer_group_id
from df group by customer_id, customer_name, customer_group_id """)
product_group_df = spark.sql("""select product_group_id, product_group_name
from df group by product_group_id, product_group_name""")
product_df = spark.sql("""select row_number() over (order by product_id) as surkey_product, product_id product_bk,
product_name, product_group_id
from df group by product_id, product_name, product_group_id""")
customer_df.show()
product_df.show()
df5.show()
# You can save those dfs directly on your model in the RBMS. Sorry as you are not defining the target DB I am not writing the code,
# but should be done calling the save method of the dataframe pointing to Hive or to a JDBC where your DW model is
# You can find more info at https://stackoverflow.com/questions/30664008/how-to-save-dataframe-directly-to-hive or if
# the target is a RDBMS https://stackoverflow.com/questions/46552161/write-dataframe-to-mysql-table-using-pyspark
# Now the tricky part is to calculate the surrogate keys of the fact table. The way to do it is to join back those df
# to the original dataframe. That can have performance issues, so please make sure that your data is
# properly distributed (find the best approach to redistribute your dataframes on the nodes so that you reduce shuffling on the joins)
# when you run
customer_df.createOrReplaceTempView("customer_df")
product_df.createOrReplaceTempView("product_df")
fact_df = spark.sql("""
select nvl(c.surkey_customer, -1) sk_customer, nvl(p.surkey_product, -1) sk_product, sales
from
df d left outer join customer_df c on d.customer_id = c.customer_bk
left outer join product_df p on d.product_id = p.product_bk
""").show()
# You can write the fact_df to your target fact table
# Be aware that to populate surrogate keys I am using nvl to assign the unknown member on the dimension. If you need
# that it also has to be present on the dimension table (customer and product, not group tables)
如您所见,此解决方案使用简单的雪花模式。但是,如果您有 Slowly Changing Dimensions Type 2 或其他类型的维度建模,模型可能会更复杂
该代码的输出是
+---------------+-----------+-------------+-----------------+
|surkey_customer|customer_bk|customer_name|customer_group_id|
+---------------+-----------+-------------+-----------------+
| 1| 1| test1| 1|
| 2| 2| test2| 1|
+---------------+-----------+-------------+-----------------+
+--------------+----------+------------+----------------+
|surkey_product|product_bk|product_name|product_group_id|
+--------------+----------+------------+----------------+
| 1| 1| product 1| 1|
| 2| 7| product 7| 1|
+--------------+----------+------------+----------------+
+-----------+-------------+-----------------+-------------------+----------+------------+----------------+------------------+-------+-----------+
|customer_id|customer_name|customer_group_id|customer_group_name|product_id|product_name|product_group_id|product_group_name| sales| id|
+-----------+-------------+-----------------+-------------------+----------+------------+----------------+------------------+-------+-----------+
| 1| test1| 1| group 1| 1| product 1| 1| product group 1| 987.5| 0|
| 2| test2| 1| group 1| 7| product 7| 1| product group 1|12345.5| 8589934592|
| 2| test2| 1| group 1| 1| product 1| 1| product group 1| 2387.3|17179869184|
+-----------+-------------+-----------------+-------------------+----------+------------+----------------+------------------+-------+-----------+
+-----------+----------+-------+
|sk_customer|sk_product| sales|
+-----------+----------+-------+
| 1| 1| 987.5|
| 2| 2|12345.5|
| 2| 1| 2387.3|
+-----------+----------+-------+
希望这可以帮助
添加回答
举报