1 回答
TA贡献1712条经验 获得超3个赞
这里有两个问题,在文档中都有提到cross_val_predict
:
结果可能与和 不同
cross_validate
,cross_val_score
除非所有测试集都具有相同的大小并且度量在样本上分解。
首先是使所有集合(训练和测试)在两种情况下都相同,这在您的示例中并非如此。为此,我们需要使用该kfold
方法来定义我们的 CV 折叠,然后在两种情况下都使用这些相同的折叠。这是一个带有虚拟数据的示例:
from sklearn.datasets import make_regression
from sklearn.model_selection import KFold, cross_val_score, cross_val_predict
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
X, y = make_regression(n_samples=2000, n_features=4, n_informative=2,
random_state=42, shuffle=False)
rf = RandomForestRegressor(max_depth=2, random_state=0)
kf = KFold(n_splits=5)
rf_preds = cross_val_predict(rf, X, y, cv=kf, n_jobs=5)
print("RMSE Score using cv preds: {:0.5f}".format(mean_squared_error(y, rf_preds, squared=False)))
scores = cross_val_score(rf, X, y, cv=kf, scoring='neg_root_mean_squared_error', n_jobs=5)
print("RMSE Score using cv_score: {:0.5f}".format(scores.mean() * -1))
上面代码片段的结果(完全可重现,因为我们已经明确设置了所有必要的随机种子)是:
RMSE Score using cv preds: 15.16839
RMSE Score using cv_score: 15.16031
所以,我们可以看到这两个分数确实相似,但仍然不完全相同。
这是为什么?答案在于上面引用的句子中相当隐秘的第二部分,即 RMSE 分数不会分解样本(老实说,我不知道它分解的任何 ML 分数)。
简单来说,whilecross_val_predict严格按照其定义计算RMSE,即(伪代码):
RMSE = square_root([(y[1] - y_pred[1])^2 + (y[2] - y_pred[2])^2 + ... + (y[n] - y_pred[n])^2]/n)
样本数量在哪里n,该cross_val_score方法并没有完全做到这一点;它所做的是为每个kCV 折叠计算 RMSE,然后对这些k值进行平均,即(再次伪代码):
RMSE = (RMSE[1] + RMSE[2] + ... + RMSE[k])/k
正是因为 RMSE 不可分解样本,这两个值虽然接近,但并不相同。
我们实际上可以通过手动执行 CV 程序并模拟 RMSE 计算来证明确实如此,如上文cross_val_score所述,即:
import numpy as np
RMSE__cv_score = []
for train_index, val_index in kf.split(X):
rf.fit(X[train_index], y[train_index])
pred = rf.predict(X[val_index])
err = mean_squared_error(y[val_index], pred, squared=False)
RMSE__cv_score.append(err)
print("RMSE Score using manual cv_score: {:0.5f}".format(np.mean(RMSE__cv_score)))
结果是:
RMSE Score using manual cv_score: 15.16031
即与cross_val_score上面返回的相同。
所以,如果我们想要非常精确,事实是正确的 RMSE(即完全根据其定义计算)是cross_val_predict; cross_val_score返回它的近似值。但是在实践中,我们往往会发现区别并不那么显着,所以cross_val_score如果方便的话我们也可以使用。
添加回答
举报