为了账号安全,请及时绑定邮箱和手机立即绑定

如何在 keras 中使用 cifar100 实现denseNet 架构?

如何在 keras 中使用 cifar100 实现denseNet 架构?

慕沐林林 2022-11-09 16:33:56
如何在 Keras 中使用 cifar100 实现denseNet 架构?我看到 Keras 中的密集网络仅使用 imageNet 实现!如何使用 cifar100 实现
查看完整描述

1 回答

?
慕森王

TA贡献1777条经验 获得超3个赞

以下示例将帮助您了解如何cifar100使用DenseNet121. 请注意,我使用keraswith in tensorflow。


import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.applications import DenseNet121

from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

from tensorflow.keras import backend as K


# import cifar 100 data

# The data, split between train and test sets:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()

print('x_train shape:', x_train.shape)

print(x_train.shape[0], 'train samples')

print(x_test.shape[0], 'test samples')


x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255


# create the base pre-trained model

base_model = DenseNet121(weights='imagenet', include_top=False)


# add a global spatial average pooling layer

x = base_model.output

x = GlobalAveragePooling2D()(x)

# let's add a fully-connected layer

x = Dense(1024, activation='relu')(x)

# and a logistic layer -- let's say we have 200 classes

predictions = Dense(100)(x)


# this is the model we will train

model = Model(inputs=base_model.input, outputs=predictions)


# first: train only the top layers (which were randomly initialized)

# i.e. freeze all convolutional layers

for layer in base_model.layers:

    layer.trainable = False


# compile the model (should be done *after* setting layers to non-trainable)

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer='rmsprop', loss=loss, metrics=['accuracy'])


# train the model on the new data for a few epochs

model.fit(x_train,y_train,epochs=5, validation_data=(x_test,y_test), verbose=1,batch_size=128)

您也可以进行微调,因为我训练了将原始base_model权重保持在冻结状态的模型(未训练原始 base_model 的权重)。在微调期间,您可以解冻一些层并再次训练。我还建议您阅读有关ImageDataGenerator增强图像并在测试期间获得更好的准确性的信息。


查看完整回答
反对 回复 2022-11-09
  • 1 回答
  • 0 关注
  • 178 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信