我正在使用带有 Tumbling Window 的 Kafka Streams,然后是聚合步骤。但是观察发出到聚合函数的元组数量正在下降。知道我哪里出错了吗?代码: Properties props = new Properties(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "events_streams_local"); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); props.put(StreamsConfig.METRIC_REPORTER_CLASSES_CONFIG, Arrays.asList(JmxReporter.class)); props.put(StreamsConfig.STATE_DIR_CONFIG, "/tmp/kafka-streams/data/"); props.put(StreamsConfig.NUM_STREAM_THREADS_CONFIG, 20); props.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 60000); props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG, EventTimeExtractor.class); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); final StreamsBuilder builder = new StreamsBuilder(); HashGenerator hashGenerator = new HashGenerator(1); builder .stream(inputTopics) .mapValues((key, value) -> { stats.incrInputRecords(); Event event = jsonUtil.fromJson((String) value, Event.class); return event; }) .filter(new UnifiedGAPingEventFilter(stats)) .selectKey(new KeyValueMapper<Object, Event, String>() { @Override public String apply(Object key, Event event) { return (String) key; } }) .groupByKey(Grouped.with(Serdes.String(), eventSerdes)) .windowedBy(TimeWindows.of(Duration.ofSeconds(30))) .aggregate(new AggregateInitializer(), new UserStreamAggregator(), Materialized.with(Serdes.String(), aggrSerdes)) .mapValues((k, v) -> { // update counter for aggregate records return v; }) .toStream() .map(new RedisSink(stats)); topology = builder.build(); streams = new KafkaStreams(topology, props);每秒的 Redis 操作只是向下滑动。
1 回答

米脂
TA贡献1836条经验 获得超3个赞
Kafka Streams 使用状态存储中的缓存来减少下游负载。如果您想将存储的每次更新作为下游记录,您可以通过StreamsConfig#CACHE_MAX_BYTES_BUFFERING_CONFIG
(全局用于所有存储)或通过传递Materialized.as(...).withCachingDisabled()
给相应的运算符(例如,aggregate()
)将每个存储的缓存大小设置为零。
查看文档了解更多详情:https ://docs.confluent.io/current/streams/developer-guide/memory-mgmt.html
添加回答
举报
0/150
提交
取消